ઉપવલય ${E_1}\,\,:\,\,\frac{{{x^2}}}{9}\,\, + \;\,\frac{{{x^2}}}{4}\, = \,\,1$એ લંબચોરસ $R$ કે જેની બાજુઓ યામાક્ષોને સમાંતર હોય તેની અંદર આવેલ છે બીજુ ઉપવલય $E_2\ (0, 4)$ તો ઉપવલય $E_2$ ની ઉત્કેન્દ્રતા :
$\frac{{\sqrt 2 }}{2}$
$\frac{{\sqrt 3 }}{2}$
$1/2$
$3/4$
ઉપવલય $4x^2 + 9y^2 = 1$ ઉપર કયા બિંદુ આગળના સ્પર્શકો $8x = 9y$ ને સમાંતર હોય ?
અહી $S=\left\{(x, y) \in N \times N : 9(x-3)^{2}+16(y-4)^{2} \leq 144\right\}$ અને $\quad T=\left\{(x, y) \in R \times R :(x-7)^{2}+(y-4)^{2} \leq 36\right\}$ હોય તો $n ( S \cap T )$ ની કિમંત $......$ થાય.
$\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1\,\,\left( {a\,\, < \,\,b} \right)$ ની બે નાભિઓ $S$ અને $S'$ હોય અને જો ઉપવલય અને ઉપવલય પરનું બિંદુ $P\ (x_1, y_1)$ હોય તો $SP + S'P = ……$
જો $\frac{{{x^2}}}{4}\,\, + \;\,{y^2}\,\, = \,\,1$પરના બે બિંદુઓ $P_1$ અને $P_2$ કે જ્યાં આગળના સ્પર્શકો એ બિંદુ $(0, 1)$ અને $(2, 0)$ ને જોડતી જીવાને સમાંતર હોય, તો $P_1$ અને $P_2$ વચ્ચેનું અંતર :
બિંદુ $P$ એવી રીતે ખસે છે કે જેથી $(ae, 0)$ અને $(-ae, 0)$ બિંદુથી તેના અંતરનો સરવાળો હંમેશા $2a$ રહે છે. તો $P$ નો બિંદુપથ શોધો.(જ્યાં $0 < e < 1$).