Find the equation for the ellipse that satisfies the given conditions: Ends of major axis $(0,\, \pm \sqrt{5})$ ends of minor axis $(±1,\,0)$
Ends of major axis $(0, \,\pm \sqrt{5}),$ ends of minor axis $(±1,\,0)$
Here, the major axis is along the $y-$ axis.
Therefore, the equation of the ellipse will be of the form $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1,$ where a is the semimajor axis.
Accordingly, $a =\sqrt{5}$ and $b=1$
Thus, the equation of the ellipse is $\frac{x^{2}}{1^{2}}+\frac{y^{2}}{(\sqrt{5})^{2}}=1$ or $\frac{x^{2}}{1}+\frac{y^{2}}{5}=1$
The radius of the circle having its centre at $(0, 3)$ and passing through the foci of the ellipse $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1$, is
The length of the latus rectum of the ellipse $\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{{49}} = 1$
The centre of the ellipse$\frac{{{{(x + y - 2)}^2}}}{9} + \frac{{{{(x - y)}^2}}}{{16}} = 1$ is