આપેલ શરતોનું સમાધાન કરતા ઉપવલયનું સમીકરણ શોધોઃ કેન્દ્ર ઊગમબિંદુ, પ્રધાન અક્ષ $y$-અક્ષ પર હોય અને બિંદુઓ $(3, 2)$ અને $(1, 6)$ માંથી પસાર થાય.
since the centre is at $(0,\,0)$ and the major axis is on the $y-$ axis, the equation of the ellipse will be of the form
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ ........... $(1)$
Where, a is the semi-major axis The ellipse passes through points $(3,\,2)$ and $(1,\,6) .$ Hence,
$\frac{9}{b^{2}}+\frac{4}{a^{2}}=1$ ........... $(2)$
$\frac{1}{b^{2}}+\frac{36}{a^{2}}=1$ ........... $(3)$
On solving equations $(2)$ and $(3),$ we obtain $b^{2}=10$ and $a^{2}=40$.
Thus, the equation of the ellipse is $\frac{x^{2}}{10^{2}}+\frac{y^{2}}{40}=1$ or $4 x^{2}+y^{2}=40$
પ્રથમ ચરણમાં રેખા $y=m x$ અને ઉપવલય $2 x^{2}+y^{2}=1$ બિંદુ $\mathrm{P}$ આગળ છેદે છે . જો બિંદુ $P$ આગળનો અભિલંભ અક્ષોને $\left(-\frac{1}{3 \sqrt{2}}, 0\right)$ અને $(0, \beta)$ આગળ છેદે છે તો $\beta$ મેળવો.
રેખા $L$ એ રેખાઓ $b x+10 y-8=0$ અને $2 x-3 y=0$, $b \in R -\left\{\frac{4}{3}\right\}$ ના છેદબિંદુ માંથી પસાર થાય છે . જો રેખા $L$ એ બિંદુ $(1,1)$ માંથી પસાર થાય છે અને વર્તુળ $17\left( x ^{2}+ y ^{2}\right)=16$ ને સ્પર્શે છે તો ઉપવલય $\frac{x^{2}}{5}+\frac{y^{2}}{b^{2}}=1$ ની ઉત્કેન્દ્રીતા મેળવો.
જે ઉપવલયનું કેન્દ્ર $(2, -3)$ આગળ, નાભિકેન્દ્ર $(3, -3)$ આગળ અને એક શિરોબિંદુ $(4, -3)$ આગળ હોય તેવા ઉપવલયનું સમીકરણ શોધો.
આપેલ શરતોનું સમાધાન કરતા ઉપવલયનું સમીકરણ શોધોઃ પ્રધાન અક્ષનાં અંત્યબિંદુઓ $(0,\, \pm \sqrt{5})$, ગૌણ અક્ષનાં અંત્યબિંદુઓ $(±1,\,0)$
ઉપવલય $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ પરના કોઇ બિંદુથી દોરવામાં આવેલ સ્પર્શકે અક્ષો પર બનાવેલ ત્રિકોણનું ન્યૂનતમ ક્ષેત્રફળ . . . . થાય.