प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए
केंद्र $(0,0)$ पर, दीर्घ-अक्ष, $y-$अक्ष पर और बिंदुओं $(3,2)$ और $(1,6)$ से जाता है।
since the centre is at $(0,\,0)$ and the major axis is on the $y-$ axis, the equation of the ellipse will be of the form
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ ........... $(1)$
Where, a is the semi-major axis The ellipse passes through points $(3,\,2)$ and $(1,\,6) .$ Hence,
$\frac{9}{b^{2}}+\frac{4}{a^{2}}=1$ ........... $(2)$
$\frac{1}{b^{2}}+\frac{36}{a^{2}}=1$ ........... $(3)$
On solving equations $(2)$ and $(3),$ we obtain $b^{2}=10$ and $a^{2}=40$.
Thus, the equation of the ellipse is $\frac{x^{2}}{10^{2}}+\frac{y^{2}}{40}=1$ or $4 x^{2}+y^{2}=40$
किसी दीर्घवृत्त का अर्द्वलघु अक्ष $OB$ तथा नाभियाँ $F$ और $F'$ हैं तथा कोण $FBF'$ समकोण है तब दीर्घवृत्त की उत्केन्द्रता है
एक दीर्घवृत्त, जिसकी नाभियाँ $(0,2)$ तथा $(0,-2)$ पर हैं तथा जिसके लघु अक्ष की लम्बई $4$ है, निम्न में से किस बिन्दु से होकर जाता है ?
समीकरण $\frac{{{x^2}}}{{2 - r}} + \frac{{{y^2}}}{{r - 5}} + 1 = 0$ दीर्घवृत्त को प्रदर्शित करेगा यदि
एक दीर्घवृत्त की उत्केन्द्रता $\frac{1}{2}$ और एक नाभि बिन्दु $P\left( {\frac{1}{2},\;1} \right)$ है। इसकी एक नियता वृत्त ${x^2} + {y^2} = 1$ और अतिपरवलय ${x^2} - {y^2} = 1$ की बिन्दु $P$ के निकट स्थित उभयनिष्ठ स्पर्श रेखा है। दीर्घवृत्त का मानक रूप में समीकरण होगा
दिये गए अर्ध वृत्त में एक दीर्घवृत्त को अंतर्गत किया गया है। यह दीर्घवृत्त, अर्धवृत्त के एक वृत्तीय तोरण को दो भिन्न बिंदुओं में तथा अर्धवृत्त के व्यास को छूता है। यदि दीर्घ वृत्त का दीर्घ अक्ष और अर्ध वृत्त का व्यास समानान्तर है तो, ऐसे अधिकतम क्षेत्रफल वाले दीर्घवृत्त की उत्केन्द्रता का मान निम्न होगा: