उस गुणोत्तर श्रेणी का $12$ वाँ पद ज्ञात कीजिए, जिसका $8$ वाँ पद $192$ तथा सार्व अनुपात $2$ है।
Common ratio, $r =2$
Let $a$ be the first term of the $G.P.$
$\therefore a_{8}=a r^{s-1}=a r^{7} \Rightarrow a r^{7}=192 \Rightarrow a(2)^{7}=192 \Rightarrow a(7)^{7}=(2)^{6}(3)$
$\Rightarrow a=\frac{(2)^{6} \times 3}{(2)^{7}}=\frac{3}{2}$
$\therefore a_{12}=a r^{12-1}=\left(\frac{3}{2}\right)(2)^{11}=(3)(2)^{10}=3072$
एक गुणोत्तर श्रेढ़ी $(G.P.)$ के तीसरे तथा चौथे पदों का योग $60$ है तथा इसके प्रथम तीन पदों का गुणनफल $1000$ है। यदि इस गुणोत्तर श्रेढ़ी का प्रथम पद धनात्मक है, तो इसका सातवां पद है
एक समान्तर श्रेणी, गुणोत्तर श्रेणी तथा हरात्मक श्रेणी समान प्रथम तथा अन्तिम पद रखते हैं। तीनों श्रेणियों में पदों की संख्या विषम है, तब तीनों श्रेणियों के मध्य पद होंगे
एक गुणोत्तर श्रेणी का प्रथम पद, जिसका दूसरा पद $2$ तथा अनन्त पदों का योग $8$ है, होगा
यदि गुणोत्तर श्रेणी के अनन्त पदों का योग $S$ है जिसका प्रथम पद $a$ है, तब प्रथम $n$ पदों का योगफल है