एक गुणोत्तर श्रेणी को ज्ञात कीजिए, जिसके प्रथम दो पदों का योगफल $-4$ है तथा $5$ वाँ पद तृतीय पद का $4$ गुना है।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $a$ be the first term and $r$ be the common ratio of the $G.P.$

According to the given conditions,

$A_{2}=-4=\frac{a\left(1-r^{2}\right)}{1-r}$       .......$(1)$

$a_{5}=4 \times a_{3}$

$\Rightarrow a r^{4}=4 a r^{2} \Rightarrow r^{2}=4$

$\therefore r=\pm 2$

From $(1),$ we obtain

$-4=\frac{a\left[1-(2)^{2}\right]}{1-2}$ for $r=2$

$\Rightarrow-4=\frac{a(1-4)}{-1}$

$\Rightarrow-4=a(3)$

$\Rightarrow a=\frac{-4}{3}$

Also, $-4=\frac{a\left[1-(-2)^{2}\right]}{1-(-2)}$ for $r=-2$

$\Rightarrow-4=\frac{a(1-4)}{1+2}$

$\Rightarrow-4=\frac{a(-3)}{3}$

$\Rightarrow a=4$

Thus, the required $G.P.$ is $\frac{-4}{3}, \frac{-8}{3}, \frac{-16}{3}, \ldots$ or $4,-8,-16,-32 \ldots$

Similar Questions

यदि त्रिघातीय समीकरण $a{x^3} + b{x^2} + cx + d = 0$ के मूल गुणोत्तर श्रेणी में हैं, तब

यदि दो संख्याएँ $a$ और $b$के बीच $n$ गुणोत्तर माध्य ${G_1},\;{G_2},\;.....$${G_n}$ तथा एक माध्य $G$ हो, तो सत्य सम्बन्ध है

दो संख्याओं का योगफल उनके गुणोत्तर माध्य का $6$ गुना है तो दिखाइए कि संख्याएँ $(3+2 \sqrt{2}):(3-2 \sqrt{2})$ के अनुपात में हैं।

माना $a_{1}, a_{2}, a_{3}, \ldots$ गुणोत्तर श्रेणी इस प्रकार है कि $a_{1}<0, a_{1}+a_{2}=4$ तथा $a_{3}+a_{4}=16$. यदि $\sum_{i=1}^{9} a_{i}=4 \lambda$ है, तो $\lambda$ बराबर है

  • [JEE MAIN 2020]

माना एक गुणोत्तर श्रेढ़ी के प्रथम पद $a$ तथा सार्व अनुपात $r$ धनात्मक पूर्णांक हैं। यदि इसके प्रथम तीन पदों के वर्गों का योग $33033$ है, तो इन तीन पदों का योग है :

  • [JEE MAIN 2023]