Let $a$ be the first term and $r$ be the common ratio of the $G.P.$
According to the given conditions,
$A_{2}=-4=\frac{a\left(1-r^{2}\right)}{1-r}$ .......$(1)$
$a_{5}=4 \times a_{3}$
$\Rightarrow a r^{4}=4 a r^{2} \Rightarrow r^{2}=4$
$\therefore r=\pm 2$
From $(1),$ we obtain
$-4=\frac{a\left[1-(2)^{2}\right]}{1-2}$ for $r=2$
$\Rightarrow-4=\frac{a(1-4)}{-1}$
$\Rightarrow-4=a(3)$
$\Rightarrow a=\frac{-4}{3}$
Also, $-4=\frac{a\left[1-(-2)^{2}\right]}{1-(-2)}$ for $r=-2$
$\Rightarrow-4=\frac{a(1-4)}{1+2}$
$\Rightarrow-4=\frac{a(-3)}{3}$
$\Rightarrow a=4$
Thus, the required $G.P.$ is $\frac{-4}{3}, \frac{-8}{3}, \frac{-16}{3}, \ldots$ or $4,-8,-16,-32 \ldots$
यदि त्रिघातीय समीकरण $a{x^3} + b{x^2} + cx + d = 0$ के मूल गुणोत्तर श्रेणी में हैं, तब
यदि दो संख्याएँ $a$ और $b$के बीच $n$ गुणोत्तर माध्य ${G_1},\;{G_2},\;.....$${G_n}$ तथा एक माध्य $G$ हो, तो सत्य सम्बन्ध है
दो संख्याओं का योगफल उनके गुणोत्तर माध्य का $6$ गुना है तो दिखाइए कि संख्याएँ $(3+2 \sqrt{2}):(3-2 \sqrt{2})$ के अनुपात में हैं।
माना $a_{1}, a_{2}, a_{3}, \ldots$ गुणोत्तर श्रेणी इस प्रकार है कि $a_{1}<0, a_{1}+a_{2}=4$ तथा $a_{3}+a_{4}=16$. यदि $\sum_{i=1}^{9} a_{i}=4 \lambda$ है, तो $\lambda$ बराबर है
माना एक गुणोत्तर श्रेढ़ी के प्रथम पद $a$ तथा सार्व अनुपात $r$ धनात्मक पूर्णांक हैं। यदि इसके प्रथम तीन पदों के वर्गों का योग $33033$ है, तो इन तीन पदों का योग है :