Find the $12^{\text {th }}$ term of a $G.P.$ whose $8^{\text {th }}$ term is $192$ and the common ratio is $2$
Common ratio, $r =2$
Let $a$ be the first term of the $G.P.$
$\therefore a_{8}=a r^{s-1}=a r^{7} \Rightarrow a r^{7}=192 \Rightarrow a(2)^{7}=192 \Rightarrow a(7)^{7}=(2)^{6}(3)$
$\Rightarrow a=\frac{(2)^{6} \times 3}{(2)^{7}}=\frac{3}{2}$
$\therefore a_{12}=a r^{12-1}=\left(\frac{3}{2}\right)(2)^{11}=(3)(2)^{10}=3072$
If $a$,$b$,$c \in {R^ + }$ are such that $2a$,$b$ and $4c$ are in $A$.$P$ and $c$,$a$ and $b$ are in $G$.$P$., then
If the range of $f(\theta)=\frac{\sin ^4 \theta+3 \cos ^2 \theta}{\sin ^4 \theta+\cos ^2 \theta}, \theta \in \mathbb{R}$ is $[\alpha, \beta]$, then the sum of the infinite $G.P.$, whose first term is $64$ and the common ratio is $\frac{\alpha}{\beta}$, is equal to...........
The sum of the series $3 + 33 + 333 + ... + n$ terms is
If ${x_r} = \cos (\pi /{3^r}) - i\sin (\pi /{3^r}),$ (where $i = \sqrt{-1}),$ then value of $x_1.x_2.x_3......\infty ,$ is :-
If $a,\;b,\;c$ are in $A.P.$, then ${3^a},\;{3^b},\;{3^c}$ shall be in