$\frac{1}{\sqrt{2}}$ के हर का परिमेयकरण कीजिए।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We want to write $\frac{1}{\sqrt{2}}$ as an equivalent expression in which the denominator is a rational number. We know that $\sqrt{2} \cdot \sqrt{2}$ is rational. We also know that multiplying $\frac{1}{\sqrt{2}}$ by $\frac{\sqrt{2}}{\sqrt{2}}$ will give us an equivalent expression, since $\frac{\sqrt{2}}{\sqrt{2}}=1 .$ So, we put these two facts together to get

$\frac{1}{\sqrt{2}}=\frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{2}}{2}$

In this form, it is easy to locate $\frac{1}{\sqrt{2}}$ on the number line. It is half way between $0$ and $\sqrt{2}$.

Similar Questions

सरल कीजिए :

$(i)$ $2^{\frac{2}{3}} \cdot 2^{\frac{1}{5}}$

$(ii)$ $\left(\frac{1}{3^{3}}\right)^{7}$

$(iii)$ $\frac{11^{\frac{1}{2}}}{11^{\frac{1}{4}}}$

$(iv)$ $7^{\frac{1}{2}} \cdot 8^{\frac{1}{2}}$

$0.99999......$ को $\frac{p}{q}$ के रूप में व्यक्त कीजिए। क्या आप अपने उत्तर से आश्चर्यचकित है ? अपने अध्यापक और कक्षा के सहयोगियों के साथ उत्तर की सार्थकता पर चर्चा कीजिए।

ज्ञात कीजिए

$(i)$ $64^{\frac{1}{2}}$

$(ii)$ $32^{\frac{1}{5}}$

$(iii)$ $125^{\frac{1}{3}}$

संख्या रेखा पर $\sqrt{9.3}$ को निरूपित कीजिए।

बताइए कि निम्नलिखित संख्याओं में कौन-कौन संख्याएँ परिमेय और कौन-कौन संख्याएँ अपरिमेय हैं

$(i)$ $\sqrt{23}$

$(ii)$ $\sqrt{225}$

$(iii)$ $0.3796$

$(iv)$ $7.478478 \ldots$

$(v)$ $1.101001000100001 \ldots$