$\frac{1}{\sqrt{2}}$ के हर का परिमेयकरण कीजिए।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We want to write $\frac{1}{\sqrt{2}}$ as an equivalent expression in which the denominator is a rational number. We know that $\sqrt{2} \cdot \sqrt{2}$ is rational. We also know that multiplying $\frac{1}{\sqrt{2}}$ by $\frac{\sqrt{2}}{\sqrt{2}}$ will give us an equivalent expression, since $\frac{\sqrt{2}}{\sqrt{2}}=1 .$ So, we put these two facts together to get

$\frac{1}{\sqrt{2}}=\frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{2}}{2}$

In this form, it is easy to locate $\frac{1}{\sqrt{2}}$ on the number line. It is half way between $0$ and $\sqrt{2}$.

Similar Questions

संख्या रेखा पर $\sqrt{2}$ का स्थान निर्धारण (को निरूपित) कीजिए।

निम्नलिखित को $\frac{p}{q}$ के रूप में व्यक्त कीजिए, जहाँ $p$ और $q$ पूर्णांक हैं तथा $q \neq 0$ है

$(i)$ $0 . \overline{6}$

$(ii)$ $0 . 4\overline{7}$

$(iii)$ $0 . \overline{001}$

$\frac{1}{7}$ और $\frac{2}{7}$ के बीच की एक अपरिमेय संख्या ज्ञात कीजिए।

$\frac{p}{q}(q \neq 0)$ के रूप की परिमेय संख्याओं के अनेक उदाहरण लीजिए, जहाँ $p$ और $q$ पूर्णाक
हैं , जिनका $1$ के अतिरिक्त अन्य कोई उभयनिष्ठ गुणनखंड नहीं है और जिसका सांत दशमलव निरूपण ( प्रसार) है। क्या आप यह अनुमान लगा सकते हैं कि $q$ को कौन-सा गुण अवश्य संतुष्ट करना चाहिए ?

आपको याद होगा कि $\pi$ को एक वृत्त की परिधि (मान लीजिए $c$ ) और उसके व्यास (मान लीजिए $d$ ) के अनुपात से परिभाषित किया जाता है, अर्थात् $\pi=\frac{c}{d}$ है। यह इस तथ्य का अंतर्विरोध करता हुआ प्रतीत होता है कि $\pi$ अपरिमेय है। इस अंतर्विरोध का निराकरण आप किस प्रकार करेंगे ?