यदि त्रिघातीय समीकरण $a{x^3} + b{x^2} + cx + d = 0$ के मूल गुणोत्तर श्रेणी में हैं, तब
${c^3}a = {b^3}d$
$c{a^3} = b{d^3}$
${a^3}b = {c^3}d$
$a{b^3} = c{d^3}$
गुणोत्तर श्रेणी $3,3^{2}, 3^{3}, \ldots$ के कितने पद आवश्यक हैं ताकि उनका योगफल $120$ हो जाए |
यदि किसी गुणोत्तर श्रेणी का $5$ वां पद $2$ हो, तो श्रेणी के प्रथम $9$ पदों का गुणनफल होगा
मान लीजिए कि त्रिभुज $A B C$ की भुजाएँ $a, b, c$ हैं, एवं वह $b^2=a c$ को संतुष्ट करती हैं। तब $\frac{\sin A \cot C+\cos A}{\sin B \cot C+\cos B}$ के सभी संभावित मानों का समुच्चय क्या होगा ?
यदि दो संख्याओं के मध्य दो गुणोत्तर माध्य ${G_1}$ व ${G_2}$ तथा समान्तर माध्य $A$ रखे जावें, तब $\frac{{G_1^2}}{{{G_2}}} + \frac{{G_2^2}}{{{G_1}}}$ का मान होगा
गुणोत्तर श्रेणी के तीन क्रमागत पदों का योग $38$ तथा उनका गुणनफल $1728$ है, तब श्रेणी का महत्तम पद होगा