Find a $G.P.$ for which sum of the first two terms is $-4$ and the fifth term is $4$ times the third term.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $a$ be the first term and $r$ be the common ratio of the $G.P.$

According to the given conditions,

$A_{2}=-4=\frac{a\left(1-r^{2}\right)}{1-r}$       .......$(1)$

$a_{5}=4 \times a_{3}$

$\Rightarrow a r^{4}=4 a r^{2} \Rightarrow r^{2}=4$

$\therefore r=\pm 2$

From $(1),$ we obtain

$-4=\frac{a\left[1-(2)^{2}\right]}{1-2}$ for $r=2$

$\Rightarrow-4=\frac{a(1-4)}{-1}$

$\Rightarrow-4=a(3)$

$\Rightarrow a=\frac{-4}{3}$

Also, $-4=\frac{a\left[1-(-2)^{2}\right]}{1-(-2)}$ for $r=-2$

$\Rightarrow-4=\frac{a(1-4)}{1+2}$

$\Rightarrow-4=\frac{a(-3)}{3}$

$\Rightarrow a=4$

Thus, the required $G.P.$ is $\frac{-4}{3}, \frac{-8}{3}, \frac{-16}{3}, \ldots$ or $4,-8,-16,-32 \ldots$

Similar Questions

Find the $20^{\text {th }}$ and $n^{\text {th }}$ terms of the $G.P.$ $\frac{5}{2}, \frac{5}{4}, \frac{5}{8}, \ldots$

The numbers $(\sqrt 2 + 1),\;1,\;(\sqrt 2 - 1)$ will be in

The ${20^{th}}$ term of the series $2 \times 4 + 4 \times 6 + 6 \times 8 + .......$ will be

Let $a_{n}$ be the $n^{\text {th }}$ term of a G.P. of positive terms.

If $\sum\limits_{n=1}^{100} a_{2 n+1}=200$ and $\sum\limits_{n=1}^{100} a_{2 n}=100,$ then $\sum\limits_{n=1}^{200} a_{n}$ is equal to 

  • [JEE MAIN 2020]

Let $a_1, a_2, a_3, \ldots$. be a $GP$ of increasing positive numbers. If the product of fourth and sixth terms is $9$ and the sum of fifth and seventh terms is $24 ,$ then $a_1 a_9+a_2 a_4 a_9+a_5+a_7$ is equal to $.........$.

  • [JEE MAIN 2023]