Find a $G.P.$ for which sum of the first two terms is $-4$ and the fifth term is $4$ times the third term.
Let $a$ be the first term and $r$ be the common ratio of the $G.P.$
According to the given conditions,
$A_{2}=-4=\frac{a\left(1-r^{2}\right)}{1-r}$ .......$(1)$
$a_{5}=4 \times a_{3}$
$\Rightarrow a r^{4}=4 a r^{2} \Rightarrow r^{2}=4$
$\therefore r=\pm 2$
From $(1),$ we obtain
$-4=\frac{a\left[1-(2)^{2}\right]}{1-2}$ for $r=2$
$\Rightarrow-4=\frac{a(1-4)}{-1}$
$\Rightarrow-4=a(3)$
$\Rightarrow a=\frac{-4}{3}$
Also, $-4=\frac{a\left[1-(-2)^{2}\right]}{1-(-2)}$ for $r=-2$
$\Rightarrow-4=\frac{a(1-4)}{1+2}$
$\Rightarrow-4=\frac{a(-3)}{3}$
$\Rightarrow a=4$
Thus, the required $G.P.$ is $\frac{-4}{3}, \frac{-8}{3}, \frac{-16}{3}, \ldots$ or $4,-8,-16,-32 \ldots$
Find the $20^{\text {th }}$ and $n^{\text {th }}$ terms of the $G.P.$ $\frac{5}{2}, \frac{5}{4}, \frac{5}{8}, \ldots$
The numbers $(\sqrt 2 + 1),\;1,\;(\sqrt 2 - 1)$ will be in
The ${20^{th}}$ term of the series $2 \times 4 + 4 \times 6 + 6 \times 8 + .......$ will be
Let $a_{n}$ be the $n^{\text {th }}$ term of a G.P. of positive terms.
If $\sum\limits_{n=1}^{100} a_{2 n+1}=200$ and $\sum\limits_{n=1}^{100} a_{2 n}=100,$ then $\sum\limits_{n=1}^{200} a_{n}$ is equal to
Let $a_1, a_2, a_3, \ldots$. be a $GP$ of increasing positive numbers. If the product of fourth and sixth terms is $9$ and the sum of fifth and seventh terms is $24 ,$ then $a_1 a_9+a_2 a_4 a_9+a_5+a_7$ is equal to $.........$.