यदि $\left( x ^{2}+\frac{1}{ bx }\right)^{11}, b \neq 0$, में $x ^{7}$ का गुणांक तथा $\left( x -\frac{1}{ bx ^{2}}\right)^{11}$, में $x ^{-7}$ का गुणांक बराबर है, तो $b$ का मान बराबर है ?
$-1$
$2$
$-2$
$1$
${(1 + \alpha x)^4}$ व ${(1 - \alpha x)^6}$ के प्रसार में मध्य पद के गुणांक समान होंगे यदि $\alpha $ का मान है
${(1 + x + {x^3} + {x^4})^{10}}$ के विस्तार में ${x^4}$ का गुणांक होगा
${(1 + x)^{10}}$ के विस्तार में मध्य पद का गुणांक होगा
माना कि $S=\{a+b \sqrt{2}: a, b \in Z \}, T_1=\left\{(-1+\sqrt{2})^n: n \in N \right\}$, और $T_2=\left\{(1+\sqrt{2})^n: n \in N \right\}$ हैं। तब निम्नलिखित कथनों में से कौन सा (से) सत्य है (हैं)?
$(A)$ $Z \cup T_1 \cup T_2 \subset S$
$(B)$ $T_1 \cap\left(0, \frac{1}{2024}\right)=\phi$, जहां $\phi$ रिक्त समुच्चय (empty set) को दर्शाता है।
$(C)$ $T_2 \cap(2024, \infty) \neq \phi$
$(D)$ किन्हीं दिये गए $a, b \in Z$ के लिए, $\cos (\pi(a+b \sqrt{2}))+i \sin (\pi(a+b \sqrt{2})) \in Z$ यदि और केवल यदि (if and only if) $b=0$, जहां $i=\sqrt{-1}$ है।
द्विपद प्रमेय का उपयोग करते हुए गुणनफल $(1+2 x)^{6}(1-x)^{7}$ में $x^{5}$ का गुणांक ज्ञात कीजिए।