$(1+a)^{m+n}$ के प्रसार में सिद्ध कीजिए कि $a^{m}$ तथा $a^{n}$ के गुणांक बराबर हैं |
It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right),$ in the binomial expansion of $(a+b)^{n}$ is given by $T_{r+1}=^{n} C_{r} a^{n-r} b^{r}$
Assuming that $a^{m}$ occurs in the $(r+1)^{th}$ term of the expansion $(1+a)^{m+n},$ we obtain ${T_{r + 1}} = {\,^{m + n}}{C_r}{(1)^{m + n - r}}{(a)^r} = {\,^{m + n}}{C_r}{a^r}$
Comparing the indices of a in $a^{m}$ in $T_{r+1},$
We obtain $r = m$
Therefore, the coefficient of $a^{m}$ is
${\,^{m + n}}{C_m} = \frac{{(m + n)!}}{{m!(m + n - m)!}} = \frac{{(m + n)!}}{{m!n!}}$ ...........$(1)$
Assuming that $a^{n}$ occurs in the $(k+1)^{t h}$ term of the expansion $(1+a)^{m+n},$ we obtain
${T_{k + 1}} = {\,^{m + n}}{C_k}{(1)^{m + n - k}}{(a)^k} = {\,^{m + n}}{C_k}{(a)^k}$
Comparing the indices of a in $a^{n}$ and in $T_{k+1}$
We obtain
$k=n$
Therefore, the coefficient of $a^{n}$ is
${\,^{m + n}}{C_n} = \frac{{(m + n)!}}{{n!(m + n - n)!}} = \frac{{(m + n)!}}{{n!m!}}$ ............$(2)$
Thus, from $(1)$ and $(2),$ it can be observed that the coefficients of $a^{m}$ and $a^{n}$ in the exansion of $(1+a)^{m+n}$ are equal
यदि ${(1 + x)^m}$ के द्विपद प्रसार में तृतीय पद $ - \frac{1}{8}{x^2}$ है, तब $m$ का परिमेय मान है
यदि ${(3 + ax)^9}$ के विस्तार में ${x^2}$ व ${x^3}$ के गुणांक बराबर हों, तो $a$ का मान होगा
यदि $n$, बहुपद ${\left[ {\frac{1}{{\sqrt {5{x^3} + 1} - \sqrt {5{x^3} - 1} }}} \right]^8} $$+ {\left[ {\frac{1}{{\sqrt {5{x^3} + 1} + \sqrt {5{x^3} - 1} }}} \right]^8}$ की घात है, तथा $m$ इसमें स्थित $x ^{ n }$ का गुणांक है, तो क्रमित युग्म $( n , m )$ बराबर है $:$
यदि ${\left( {{x^2} + \frac{k}{x}} \right)^5}$ के विस्तार में $x $ का गुणांक $270$ हो, तो $k =$
${(a + b)^n}$ के विस्तार में चतुर्थ पद $56$ हो, तो $n$ का मान होगा