નિશ્ચાયકનું મૂલ્ય શોધો : $\left|\begin{array}{cc}x^{2}-x+1 & x-1 \\ x+1 & x+1\end{array}\right|$
$(ii)$ $\left|\begin{array}{cc}x^{2}-x+1 & x-1 \\ x+1 & x+1\end{array}\right|$
$=\left(x^{2}-x+1\right)(x+1)-(x-1)(x+1)$
$=x^{3}-x^{2}+x+x^{2}-x+1-\left(x^{2}-1\right)$
$=x^{3}+1-x^{2}+1$
$=x^{3}-x^{2}+2$
જો $n \ne 3k$ અને 1, $\omega ,{\omega ^2}$ એકના ઘનમૂળ હોય , તો $\Delta = \left| {\,\begin{array}{*{20}{c}}1&{{\omega ^n}}&{{\omega ^{2n}}}\\{{\omega ^{2n}}}&1&{{\omega ^n}}\\{{\omega ^n}}&{{\omega ^{2n}}}&1\end{array}\,} \right|$ ની કિમત મેળવો.
જો $\left|\begin{array}{ccc}x+1 & x & x \\ x & x+\lambda & x \\ x & x & x+\lambda^2\end{array}\right|=\frac{9}{8}(103 x+81)$, હોય,તો $\lambda$, $\frac{\lambda}{3}$ એ $.........$ સમીકરણના બીજ છે.
$-\frac{\pi}{4} \leq x \leq \frac{\pi}{4}$ અંતરાલમાં $\left|\begin{array}{lll}\sin x & \cos x & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x\end{array}\right|=0$ ના વાસ્તવિક ભિન્ન બીજની સંખ્યા મેળવો.
$\mathrm{A}$ એ $3 \times 3$ કક્ષાનો ચોરસ શ્રેણિક હોય, તો $|\mathrm{k A}|$ $=$ ........
સમીકરણની સંહતિ $x + y + z = 6$, $x + 2y + 3z = 10,x + 2y + \lambda z = \mu $ નો એકપણ ઉકેલ શક્ય ન હોય તો . . .