$8 \sqrt{15}$ को $2 \sqrt{3}$ से भाग दीजिए।
$5 \sqrt{5}$
$4 \sqrt{4}$
$4 \sqrt{5}$
$5 \sqrt{4}$
सरल कीजिए
$(i)$ $2^{\frac{2}{3}} \cdot 2^{\frac{1}{3}}$
$(ii)$ $\left(\frac{1}{3^{5}}\right)^{4}$
$(iii)$ $\frac{7^{\frac{1}{5}}}{7^{\frac{1}{3}}}$
$(iv)$ $13^{\frac{1}{5}} \cdot 17^{\frac{1}{5}}$
$\frac{p}{q}(q \neq 0)$ के रूप की परिमेय संख्याओं के अनेक उदाहरण लीजिए, जहाँ $p$ और $q$ पूर्णाक
हैं , जिनका $1$ के अतिरिक्त अन्य कोई उभयनिष्ठ गुणनखंड नहीं है और जिसका सांत दशमलव निरूपण ( प्रसार) है। क्या आप यह अनुमान लगा सकते हैं कि $q$ को कौन-सा गुण अवश्य संतुष्ट करना चाहिए ?
बताइए कि निम्नलिखित संख्याओं में कौन-कौन संख्याएँ परिमेय और कौन-कौन संख्याएँ अपरिमेय हैं
$(i)$ $\sqrt{23}$
$(ii)$ $\sqrt{225}$
$(iii)$ $0.3796$
$(iv)$ $7.478478 \ldots$
$(v)$ $1.101001000100001 \ldots$
संख्या रेखा पर $\sqrt{2}$ का स्थान निर्धारण (को निरूपित) कीजिए।
नीचे दिए गए कथन सत्य हैं या असत्य हैं। कारण के साथ अपने उत्तर दीजिए।
$(i)$ प्रत्येक अपरिमेय संख्या एक वास्तविक संख्या होती है।
$(ii)$ संख्या रेखा का प्रत्येक बिन्दु $\sqrt{m}$ के रूप का होता है, जहाँ $m$ एक प्राकृत संख्या है।
$(iii)$ प्रत्येक वास्तविक संख्या एक अपरिमेय संख्या होती है।