Convert $40^{\circ} 20^{\prime}$ into radian measure.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We know that $180^{\circ}=\pi$ radian.

Hence $\quad 40^{\circ} 20^{\prime}=40 \frac{1}{3}$ degree $=\frac{\pi}{180} \times \frac{121}{3}$ radian $=\frac{121 \pi}{540}$ radian.

Therefore $40^{\circ} 20^{\prime}=\frac{121 \pi}{540}$ radian.

Similar Questions

If $\tan x=\frac{3}{4}, \pi < x < \frac{3 \pi}{2},$ find the value of $\sin \frac{x}{2}, \cos \frac{x}{2}$ and $\tan \frac{x}{2}$

Prove that: $\sin x+\sin 3 x+\sin 5 x+\sin 7 x=4 \cos x \cos 2 x \sin 4 x$

Find the value of:

$\tan 15^{\circ}$

Prove that :

$\cot ^{2} \frac{\pi}{6}+\cos ec \,\frac{5 \pi}{6}+3 \tan ^{2}\, \frac{\pi}{6}=6$

If $\cos \theta - \sin \theta = \sqrt 2 \sin \theta ,$ then $\cos \theta + \sin \theta $ is equal to