Convert $40^{\circ} 20^{\prime}$ into radian measure.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We know that $180^{\circ}=\pi$ radian.

Hence $\quad 40^{\circ} 20^{\prime}=40 \frac{1}{3}$ degree $=\frac{\pi}{180} \times \frac{121}{3}$ radian $=\frac{121 \pi}{540}$ radian.

Therefore $40^{\circ} 20^{\prime}=\frac{121 \pi}{540}$ radian.

Similar Questions

Prove that: $\frac{(\sin 7 x+\sin 5 x)+(\sin 9 x+\sin 3 x)}{(\cos 7 x+\cos 5 x)+(\cos 9 x+\cos 3 x)}=\tan 6 x$

Find the value of the trigonometric function $\tan \frac{19 \pi}{3}$.

Find the degree measures corresponding to the following radian measures (Use $\pi=\frac{22}{7}$ ).

$\frac{11}{16}$

Prove that: $(\cos x-\cos y)^{2}+(\sin x-\sin y)^{2}=4 \sin ^{2} \frac{x-y}{2}$

If $\alpha = 22^\circ 30',$ then $(1 + \cos \alpha )(1 + \cos 3\alpha )$ $(1 + \cos 5\alpha )(1 + \cos 7\alpha )$ equals