Convert $40^{\circ} 20^{\prime}$ into radian measure.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We know that $180^{\circ}=\pi$ radian.

Hence $\quad 40^{\circ} 20^{\prime}=40 \frac{1}{3}$ degree $=\frac{\pi}{180} \times \frac{121}{3}$ radian $=\frac{121 \pi}{540}$ radian.

Therefore $40^{\circ} 20^{\prime}=\frac{121 \pi}{540}$ radian.

Similar Questions

Find the angle in radian through which a pendulum swings if its length is $75\, cm$ and the tip describes an arc of length.

$15\,cm$

If $\tan \theta - \cot \theta = a$ and $\sin \theta + \cos \theta = b,$ then ${({b^2} - 1)^2}({a^2} + 4)$ is equal to

If $\tan A + \cot A = 4,$ then ${\tan ^4}A + {\cot ^4}A$ is equal to

Prove that:

 $ 2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+\cos \frac{3 \pi}{13}+\cos \frac{5 \pi}{13}=0$

If $a\cos \theta + b\sin \theta = m$ and $a\sin \theta - b\cos \theta = n,$ then ${a^2} + {b^2} = $