Prove that :
$\cot ^{2} \frac{\pi}{6}+\cos ec \,\frac{5 \pi}{6}+3 \tan ^{2}\, \frac{\pi}{6}=6$
$L.H.S.$ $=\cot ^{2}\, \frac{\pi}{6}+\cos ec \,\frac{5 \pi}{6}+3 \tan ^{2}\, \frac{\pi}{6}$
$=(\sqrt{3})^{2}+\cos ec\, \left(\pi-\frac{\pi}{6}\right)+3\left(\frac{1}{\sqrt{3}}\right)^{2}$
$=3+\cos ec\, \frac{\pi}{6}+3 \times \frac{1}{3}$
$=3+2+1=6$
$= R . H.S$
If $\sin \theta + \cos \theta = m$ and $\sec \theta + {\rm{cosec}}\theta = n$, then $n(m + 1)(m - 1) = $
If $\sin \theta = \frac{{ - 4}}{5}$ and $\theta $ lies in the third quadrant, then $\cos \frac{\theta }{2} = $
If $5\tan \theta = 4,$ then $\frac{{5\sin \theta - 3\cos \theta }}{{5\sin \theta + 2\cos \theta }} = $
If $\left| {\cos \,\theta \,\left\{ {\sin \theta + \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha } } \right\}\,} \right|\, \le k,$ then the value of $k$ is
If $\sin x = \frac{{ - 24}}{{25}},$ then the value of $\tan \, x$ is