If $\cos \theta - \sin \theta = \sqrt 2 \sin \theta ,$ then $\cos \theta + \sin \theta $ is equal to
$\sqrt 2 \cos \theta $
$\sqrt 2 \sin \theta $
$2\cos \theta $
$ - \sqrt 2 \cos \theta $
If $\sin \theta + \cos \theta = m$ and $\sec \theta + {\rm{cosec}}\theta = n$, then $n(m + 1)(m - 1) = $
If ${\sin ^2}\theta = \frac{{{x^2} + {y^2} + 1}}{{2x}}$, then $x$ must be
The equation ${(a + b)^2} = 4ab\,{\sin ^2}\theta $ is possible only when
Find the degree measures corresponding to the following radian measures (Use $\pi=\frac{22}{7}$ ).
$\frac{11}{16}$
The value of $\cot \frac{\pi}{24}$ is :