If $\cos \theta - \sin \theta = \sqrt 2 \sin \theta ,$ then $\cos \theta + \sin \theta $ is equal to

  • A

    $\sqrt 2 \cos \theta $

  • B

    $\sqrt 2 \sin \theta $

  • C

    $2\cos \theta $

  • D

    $ - \sqrt 2 \cos \theta $

Similar Questions

If $\sin \theta + \cos \theta = m$ and $\sec \theta + {\rm{cosec}}\theta = n$, then $n(m + 1)(m - 1) = $

If ${\sin ^2}\theta = \frac{{{x^2} + {y^2} + 1}}{{2x}}$, then $x$ must be

The equation ${(a + b)^2} = 4ab\,{\sin ^2}\theta $ is possible only when

Find the degree measures corresponding to the following radian measures (Use $\pi=\frac{22}{7}$ ).

$\frac{11}{16}$

The value of $\cot \frac{\pi}{24}$ is :

  • [JEE MAIN 2021]