अन्तराल $\left( {0,\frac{\pi }{2}} \right)$ में फलन $f(x) = {e^{ - 2x}}$ $sin 2x $है। रोले प्रमेय के अनुसार एक वास्तविक संख्या $c \in \left( {0,\frac{\pi }{2}} \right)$ इस प्रकार है कि $f'\,(c) = 0$, तब
$\pi /8$
$\pi /6$
$\pi /4$
$\pi /3$
मान लीजिए कि $\psi_1:[0, \infty) \rightarrow R , \psi_2:[0, \infty) \rightarrow R , f:[0, \infty) \rightarrow R$ और $g :[0, \infty) \rightarrow R$ ऐसे फलन हैं कि
$f(0)=g(0)=0,$
$\psi_1( x )= e ^{- x }+ x , \quad x \geq 0,$
$\psi_2( x )= x ^2-2 x -2 e ^{- x }+2, x \geq 0,$
$f( x )=\int_{- x }^{ x }\left(|t|- t ^2\right) e ^{- t ^2} dt , x >0$
और
$g(x)=\int_0^{x^2} \sqrt{t} e^{-t} d t, x>0$
($1$) निम्न कथनों में से कौन सा सत्य है ?
$(A)$ $f(\sqrt{\ln 3})+g(\sqrt{\ln 3})=\frac{1}{3}$
$(B)$ प्रत्येक $x >1$ के लिए, एक ऐसा $\alpha \in(1, x )$ विद्यमान है जिसके लिए $\psi_1( x )=1+\alpha x$ है।
$(C)$ प्रत्येक $x >0$ के लिए, एक ऐसा $\beta \in(0, x )$ विद्यमान है जिसके लिए $\psi_2( x )=2 x \left(\psi_1(\beta)-1\right)$ है।
$(D)$ अंतराल $\left[0, \frac{3}{2}\right]$ में $f$ एक वर्धमान फलन (increasing function) है।
($2$) निम्न कथनों में से कौन सा सत्य है?
$(A)$ सभी $x >0$ के लिए, $\psi_1( x ) \leq 1$ है।
$(B)$ सभी $x >0$ के लिए, $\Psi_2( x ) \leq 0$ है।
$(C)$ सभी $x \in\left(0, \frac{1}{2}\right)$ के लिए, $f( x ) \geq 1- e ^{- x ^2}-\frac{2}{3} x ^3+\frac{2}{5} x ^5$ है।
$(D)$ सभी $x \in\left(0, \frac{1}{2}\right)$ के लिए, $g ( x ) \leq \frac{2}{3} x ^3-\frac{2}{5} x ^5+\frac{1}{7} x ^7$ है।
फलन $f ( x )= x ^{3}-4 x ^{2}+8 x +11, x \in[0,1]$ के लिए लग्रांज मध्यमान प्रमेय में $c$ का मान है
माना $R$ पर परिभाषित कोई फलन $f$ है तथा माना यह $|f( x )-f( y )| \leq\left|( x - y )^{2}\right|, \forall( x , y ) \in R$ को संतुष्ट करता है। यदि $f(0)=1$ है, तो
वक्र $y = {x^3}$ पर अन्तराल $ [-2, 2]$ के बीच स्थित उन बिन्दुओं के भुज, जिन पर खींची गई स्पर्शियों की प्रवणतायें अन्तराल $ [-2, 2]$ के लिए मध्यमान प्रमेय (Mean value theorem) द्वारा ज्ञात की जा सकती हैं, हैं
$[-1, 1]$ पर परिभाषित फलन $f(x) = |x|$ के लिए रोले का प्रमेय लागू नहीं है, क्योंकि