$[-1, 1]$ पर परिभाषित फलन $f(x) = |x|$ के लिए रोले का प्रमेय लागू नहीं है, क्योंकि
$[ -1, 1] $ पर $ f $ सतत् नहीं है
$(-1,1)$ पर $f $ अवकलनीय नहीं है
$f( - 1) \ne f(1)$
$f( - 1) = f(1) \ne 0$
यदि $c$ एक बिंदु है जिस पर, अंतराल $[3,4]$ में, फलन $f( x )=\log _{ e }\left(\frac{ x ^{2}+\alpha}{7 x }\right)$ पर रोले प्रमेय लागू होता है, जहाँ $\alpha$ $\in R$ है, तो $f^{\prime \prime}( c )$ बराबर है
यदि फलन $f(x) = a{x^3} + b{x^2} + 11x - 6$ रोले प्रमेय की शतोर्ं को अन्तराल $[1, 3]$ के लिए सन्तुष्ट करता है तथा $f'\left( {2 + \frac{1}{{\sqrt 3 }}} \right) = 0$, तब $a$ और $b$ के मान क्रमश: हैं
वास्तविक मान वाले फलन $f(x) = \sqrt {x - 1} + \sqrt {x + 24 - 10\sqrt {x - 1} ;} $ $1 < x < 26$ के लिए $f\,'(x)$ का अन्तराल $\left( {1,\,26} \right)$ में मान होगा
यदि फलनों $f(x)=\frac{x^3}{3}+2 b x+\frac{a x^2}{2}$ तथा $g(x)=\frac{x^3}{3}+a x+b x^2, a \neq 2 b$ का एक उभयानिष्ठ चरम बिन्दु है, तब $a+2 b+7$ बराबर है :
माना $f$ कोई फलन है जोकि $[ a , b ]$ में संतत तथा $( a , b )$ में दो बार अवकलनीय है। यदि सभी $x \in( a , b )$ के लिए $f^{\prime}( x ) > 0$ तथा $f^{\prime \prime}( x )<0$ हैं, तो किसी भी $c \in( a , b )$, के लिए $\frac{f( c )-f( a )}{f( b )-f( c )}$ निम्न में से किससे बड़ा है?