Consider the function $f(x) = {e^{ - 2x}}$ $sin\, 2x$ over the interval $\left( {0,{\pi \over 2}} \right)$. A real number $c \in \left( {0,{\pi \over 2}} \right)\,,$ as guaranteed by Rolle’s theorem, such that $f'\,(c) = 0$ is
$\pi /8$
$\pi /6$
$\pi /4$
$\pi /3$
Verify Mean Value Theorem, if $f(x)=x^{3}-5 x^{2}-3 x$ in the interval $[a, b],$ where $a=1$ and $b=3 .$ Find all $c \in(1,3)$ for which $f^{\prime}(c)=0$
The value of $c$ in the Lagrange's mean value theorem for the function $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-4 \mathrm{x}^{2}+8 \mathrm{x}+11$ when $\mathrm{x} \in[0,1]$ is
If the Rolle's theorem holds for the function $f(x) = 2x^3 + ax^2 + bx$ in the interval $[-1, 1 ]$ for the point $c = \frac{1}{2}$ , then the value of $2a + b$ is
Let $f(x) = \sqrt {x - 1} + \sqrt {x + 24 - 10\sqrt {x - 1} ;} $ $1 < x < 26$ be real valued function. Then $f\,'(x)$ for $1 < x < 26$ is
Let $\psi_1:[0, \infty) \rightarrow R , \psi_2:[0, \infty) \rightarrow R , f:[0, \infty) \rightarrow R$ and $g :[0, \infty) \rightarrow R$ be functions such that
$f(0)=g(0)=0$
$\Psi_1( x )= e ^{- x }+ x , \quad x \geq 0$
$\Psi_2( x )= x ^2-2 x -2 e ^{- x }+2, x \geq 0$
$f( x )=\int_{- x }^{ x }\left(| t |- t ^2\right) e ^{- t ^2} dt , x >0$
and
$g(x)=\int_0^{x^2} \sqrt{t} e^{-t} d t, x>0$
($1$) Which of the following statements is $TRUE$ ?
$(A)$ $f(\sqrt{\ln 3})+ g (\sqrt{\ln 3})=\frac{1}{3}$
$(B)$ For every $x>1$, there exists an $\alpha \in(1, x)$ such that $\psi_1(x)=1+\alpha x$
$(C)$ For every $x>0$, there exists a $\beta \in(0, x)$ such that $\psi_2(x)=2 x\left(\psi_1(\beta)-1\right)$
$(D)$ $f$ is an increasing function on the interval $\left[0, \frac{3}{2}\right]$
($2$) Which of the following statements is $TRUE$ ?
$(A)$ $\psi_1$ (x) $\leq 1$, for all $x>0$
$(B)$ $\psi_2(x) \leq 0$, for all $x>0$
$(C)$ $f( x ) \geq 1- e ^{- x ^2}-\frac{2}{3} x ^3+\frac{2}{5} x ^5$, for all $x \in\left(0, \frac{1}{2}\right)$
$(D)$ $g(x) \leq \frac{2}{3} x^3-\frac{2}{5} x^5+\frac{1}{7} x^7$, for all $x \in\left(0, \frac{1}{2}\right)$