समीकरणों $2{\sin ^2}x + {\sin ^2}2x = 2$ व $\sin 2x + \cos 2x = \tan x,$ के उभयनिष्ठ मूल हैं
$x = (2n - 1)\frac{\pi }{2}$
$x = (2n + 1)\frac{\pi }{4}$
$x = (2n + 1)\frac{\pi }{3}$
इनमें से कोई नहीं
मान लीजिये कि $\alpha$ चर वास्तविक संख्या है जो $\pi / 2$ का पूर्णांकीय गुणित $(integral\,multiple)$ नहीं है। दिये गए तत्समक $(equality)$ $\frac{\sin (\lambda \alpha)}{\sin \alpha}-\frac{\cos (\lambda \alpha)}{\cos \alpha}=\lambda-1$ को संत्ष्ट करने वाली कितनी वास्तविक संख्याएँ $\lambda$ हैं?
$\lambda$ के सभी मानों जिनके लिए समीकरण $\cos ^2 2 x-2 \sin ^4 x-2 \cos ^2 x=\lambda$ का एक वास्तविक हल $x$ है का समुच्चय है :-
यदि ${\tan ^2}\theta - (1 + \sqrt 3 )\tan \theta + \sqrt 3 = 0$, तो $\theta $ के व्यापक मान हैं
समीकरण $2{\sin ^2}\theta + \sqrt 3 \cos \theta + 1 = 0$ को सन्तुष्ट करने वाला न्यूनतम धनात्मक कोण है
यदि $0 \le x \le \pi $ तब ${81^{{{\sin }^2}x}} + {81^{{{\cos }^2}x}} = 30$ है, तो $x$ का मान है