वह सभी युग्म $( x , y )$ जो असमिका $2 \sqrt{\sin ^{2} x-2 \sin x+5} \cdot \frac{1}{4^{\sin ^{2} y}} \leq 1$ को संतुष्ट करते हैं, निम्न में से किस समीकरण को भी संतुष्ट करते हैं ?
$2\left| {\sin \,x} \right| = 3\sin \,y$
$\sin \,x = \left| {\sin \,y} \right|$
$2\,sin\, x = sin\, y$
$sin\, x = 2\, sin\, y$
सिद्ध कीजिए: $\cos 2 x \cos _{2}^{x}-\cos 3 x \cos \frac{9 x}{2}=\sin 5 x \sin \frac{5 x}{2}$
दिये गए समीकरण $\cos ^4 x+\frac{1}{\cos ^2 x}=\sin ^4 x+\frac{1}{\sin ^2 x}$ के अंतराल $[0,2 \pi]$ में कितने समाधान होंगे ?
निम्न समीकरण में वास्तविक हलों $x$ की संख्या होगी: $\cos ^2(x \sin (2 x))+\frac{1}{1+x^2}=\cos ^2 x+\sec ^2 x$
समीकरण $\cos \left(x+\frac{\pi}{3}\right) \cos \left(\frac{\pi}{3}-x\right)=\frac{1}{4} \cos ^2 2 x$$,x \in[-3 \pi, 3 \pi]$ के हलों की संख्या होगी
समीकरण $2\cos ({e^x}) = {5^x} + {5^{ - x}}$ के हलों की संख्या है