Classify the following numbers as rational or irrational :
$(i)$ $\sqrt{23}$
$(ii)$ $\sqrt{225}$
$(iii)$ $0.3796$
$(iv)$ $7.478478 \ldots$
$(v)$ $1.101001000100001 \ldots$
$(i)$ $\sqrt{23}=4.79583152331 \ldots$
As the decimal expansion of this number is non-terminating non-recurring, therefore, it is an irrational number.
$(ii)$ $\sqrt{225}=15=\frac{15}{1}$
It is a rational number as it can be represented in $\frac {p}{q}$ form.
$(iii)$ $0.3796$
As the decimal expansion of this number is terminating, therefore, it is a rational number.
$(iv)$ $7.478478 \ldots$ $=7 . \overline{478}$
As the decimal expansion of this number is non-terminating recurring, therefore, it is a rational number.
$(v)$ $1.101001000100001 \ldots$
As the decimal expansion of this number is non-terminating non-repeating, therefore, it is an irrational number.
Represent $ \sqrt{9.3}$ on the number line.
Rationalise the denominators of the following :
$(i)$ $\frac{1}{\sqrt{7}}$
$(ii)$ $\frac{1}{\sqrt{7}-\sqrt{6}}$
$(iii)$ $\frac{1}{\sqrt{5}+\sqrt{2}}$
$(iv)$ $\frac{1}{\sqrt{7}-2}$
Find :
$(i)$ $2^{\frac{2}{3}} \cdot 2^{\frac{1}{5}}$
$(ii)$ $\left(\frac{1}{3^{3}}\right)^{7}$
$(iii)$ $\frac{11^{\frac{1}{2}}}{11^{\frac{1}{4}}}$
$(iv)$ $7^{\frac{1}{2}} \cdot 8^{\frac{1}{2}}$
Simplify the following expressions :
$(i)$ $(5+\sqrt{7})(2+\sqrt{5})$
$(ii)$ $(5+\sqrt{5})(5-\sqrt{5})$
$(iii)$ $(\sqrt{3}+\sqrt{7})^{2}$
$(iv)$ $(\sqrt{11}-\sqrt{7})(\sqrt{11}+\sqrt{7})$
Simplify
$(i)$ $2^{\frac{2}{3}} \cdot 2^{\frac{1}{3}}$
$(ii)$ $\left(3^{\frac{1}{5}}\right)^{4}$
$(iii)$ $\frac{7^{\frac{1}{5}}}{7^{\frac{1}{3}}}$
$(iv)$ $13^{\frac{1}{5}} \cdot 17^{\frac{1}{5}}$