Rationalise the denominators of the following :
$(i)$ $\frac{1}{\sqrt{7}}$
$(ii)$ $\frac{1}{\sqrt{7}-\sqrt{6}}$
$(iii)$ $\frac{1}{\sqrt{5}+\sqrt{2}}$
$(iv)$ $\frac{1}{\sqrt{7}-2}$
$(i)$ $\frac{1}{\sqrt{7}}$ $=\frac{1 \times \sqrt{7}}{\sqrt{7} \times \sqrt{7}}=\frac{\sqrt{7}}{7}$
$(ii)$ $\frac{1}{\sqrt{7}-\sqrt{6}}$ $=\frac{1 \times(\sqrt{7}+\sqrt{6})}{(\sqrt{7}-\sqrt{6})(\sqrt{7}+\sqrt{6})}$ $[\because$ R.F. of $(\sqrt{x}-\sqrt{y})=(\sqrt{x}+\sqrt{y})$
$=\frac{(\sqrt{7}+\sqrt{6})}{(\sqrt{7})^{2}-(\sqrt{6})^{2}}=\frac{(\sqrt{7}+\sqrt{6})}{7-6}=\frac{(\sqrt{7}+\sqrt{6})}{1}=(\sqrt{7}+\sqrt{6})$
Thus, $\frac{1}{\sqrt{7}-\sqrt{6}}=(\sqrt{7}+\sqrt{6})$
$(iii)$ $\frac{1}{\sqrt{5}+\sqrt{2}}=\frac{1(\sqrt{5}-\sqrt{2})}{(\sqrt{5}+\sqrt{2})(\sqrt{5}-\sqrt{2})}$ $[\because $ RF of $(\sqrt{x}+\sqrt{y})$ is $(\sqrt{x}-\sqrt{y})]$
$=\frac{(\sqrt{5}-\sqrt{2})}{(\sqrt{5})^{2}-(\sqrt{2})^{2}}=\frac{(\sqrt{5}-\sqrt{2})}{5-2}=\frac{(\sqrt{5}-\sqrt{2})}{3}$
Thus, $\frac{1}{(\sqrt{5}+\sqrt{2})}=\frac{\sqrt{5}-\sqrt{2}}{3}$
$(iv)$ $\frac{1}{\sqrt{7}-2}$ $=\frac{1 \times(\sqrt{7}+2)}{(\sqrt{7}-2)(\sqrt{7}+2)}=\frac{(\sqrt{7}+2)}{(\sqrt{7})^{2}-(2)^{2}}$ $[\because$ R.F. of $(\sqrt{7}-2)$ is $(\sqrt{7}+2)]$
$=\frac{(\sqrt{7}+2)}{7-4}=\frac{\sqrt{7}+2}{3}$
Thus, $\frac{1}{(\sqrt{7}-2)}=\frac{(\sqrt{7}+2)}{3}$
Write three numbers whose decimal expansions are non-terminating non-recurring.
You know that $\frac{1}{7}=0 . \overline{142857}$. Can you predict what the decimal expansions of $\frac{2 }{7},\, \frac{3}{7}$, $\frac{4}{7},\, \frac{5}{7}, \,\frac{6}{7}$ are, without actually doing the long division ? If so, how ?
Rationalise the denominator of $\frac{5}{\sqrt{3}-\sqrt{5}}$.
Simplify the following expressions :
$(i)$ $(5+\sqrt{7})(2+\sqrt{5})$
$(ii)$ $(5+\sqrt{5})(5-\sqrt{5})$
$(iii)$ $(\sqrt{3}+\sqrt{7})^{2}$
$(iv)$ $(\sqrt{11}-\sqrt{7})(\sqrt{11}+\sqrt{7})$
Show that $0.3333... =$ $0 . \overline{3}$ can be expressed in the form $\frac {p }{q }$ , where $p$ and $q$ are integers and $q \ne 0$.