Find :
$(i)$ $2^{\frac{2}{3}} \cdot 2^{\frac{1}{5}}$
$(ii)$ $\left(\frac{1}{3^{3}}\right)^{7}$
$(iii)$ $\frac{11^{\frac{1}{2}}}{11^{\frac{1}{4}}}$
$(iv)$ $7^{\frac{1}{2}} \cdot 8^{\frac{1}{2}}$
$(i)$ $2^{\frac{2}{3:}} \times 2^{\frac{1}{5}}=2^{\frac{2}{3}+\frac{1}{5}}=2^{13 / 15}$
$\left[\because \frac{2}{3}+\frac{1}{5}=\frac{10+3}{15}=\frac{13}{15}\right]$
$(ii)$ $\left(3^{\frac{1}{3}}\right)^{7}=\left(3^{-3}\right)^{7} $ $=3^{-3 \times 7}=3^{-21}$ $\left[\because a^{\frac{1}{n}}=a^{-n}\right]$
$(iii)$ $\frac{11^{\frac{1}{2}}}{11^{\frac{1}{4}}}=11^{\frac{1}{2}-\frac{1}{4}}=11^{\frac{1}{4}}\left[\because \frac{1}{2}-\frac{1}{4}=\frac{2-1}{4}=\frac{1}{4}\right]$
$(iv)$ $7^{\frac{1}{2}} \cdot 8^{\frac{1}{2}}=(7 \times 8)^{\frac{1}{2}}=(56)^{\frac{1}{2}}$
Rationalise the denominator of $\frac{1}{\sqrt{2}}$.
Write three numbers whose decimal expansions are non-terminating non-recurring.
State whether the following statements are true or false. Give reasons for your answers.
$(i)$ Every natural number is a whole number.
$(ii)$ Every integer is a whole number.
$(iii)$ Every rational number is a whole number
Find five rational numbers between $1$ and $2$.
Show that $3.142678$ is a rational number. In other words, express $3.142678$ in the form $\frac {p }{q }$, where $p$ and $q$ are integers and $q \ne 0$.