Simplify
$(i)$ $2^{\frac{2}{3}} \cdot 2^{\frac{1}{3}}$
$(ii)$ $\left(3^{\frac{1}{5}}\right)^{4}$
$(iii)$ $\frac{7^{\frac{1}{5}}}{7^{\frac{1}{3}}}$
$(iv)$ $13^{\frac{1}{5}} \cdot 17^{\frac{1}{5}}$
$(i)$ $2^{\frac{2}{3}} \cdot 2^{\frac{1}{3}}=2^{\left(\frac{2}{3}+\frac{1}{3}\right)}=2^{\frac{3}{3}}=2^{1}=2$
$(ii)$ $\left(3^{\frac{1}{5}}\right)^{4}=3^{\frac{4}{5}}$
$(iii)$ $\frac{7^{\frac{1}{5}}}{7^{\frac{1}{3}}}=7^{\left(\frac{1}{5}-\frac{1}{3}\right)}=7^{\frac{3-5}{15}}=7^{\frac{-2}{15}}$
$(iv) $ $13^{\frac{1}{5}} \cdot 17^{\frac{1}{5}}=(13 \times 17)^{\frac{1}{5}}=221^{\frac{1}{5}}$
Check whether $7 \sqrt{5}, \,\frac{7}{\sqrt{5}}, \,\sqrt{2}+21, \,\pi-2$ are irrational numbers or not.
Rationalise the denominator of $\frac{1}{2+\sqrt{3}}$.
Locate $\sqrt 2$ on the number line.
Find :
$(i)$ $64^{\frac{1}{2}}$
$(ii)$ $32^{\frac{1}{5}}$
$(iii) $ $125^{\frac{1}{3}}$
Show that $0.2353535 \ldots=0.2 \overline{35}$ can be expressed in the form $\frac{p}{q},$ where $p$ and $q$ are integers and $q \neq 0$.