Simplify the following expressions :
$(i)$ $(5+\sqrt{7})(2+\sqrt{5})$
$(ii)$ $(5+\sqrt{5})(5-\sqrt{5})$
$(iii)$ $(\sqrt{3}+\sqrt{7})^{2}$
$(iv)$ $(\sqrt{11}-\sqrt{7})(\sqrt{11}+\sqrt{7})$
$(i)$ $(5+\sqrt{7})(2+\sqrt{5})=10+5 \sqrt{5}+2 \sqrt{7}+\sqrt{35}$
$(ii)$ $(5+\sqrt{5})(5-\sqrt{5})=5^{2}-(\sqrt{5})^{2}=25-5=20$
$(iii)$ $(\sqrt{3}+\sqrt{7})^{2}=(\sqrt{3})^{2}+2 \sqrt{3} \sqrt{7}+(\sqrt{7})^{2}=3+2 \sqrt{21}+7=10+2 \sqrt{21}$
$(iv)$ $(\sqrt{11}-\sqrt{7})(\sqrt{11}+\sqrt{7})=(\sqrt{11})^{2}-(\sqrt{7})^{2}=11-7=4$
Rationalise the denominator of $\frac{1}{2+\sqrt{3}}$.
Are the square roots of all positive integers irrational ? If not, give an example of the square root of a number that is a rational number.
Represent $ \sqrt{9.3}$ on the number line.
Classify the following numbers as rational or irrational :
$(i)$ $2-\sqrt{5}$
$(ii)$ $(3+\sqrt{23})-\sqrt{23}$
$(iii)$ $\frac{2 \sqrt{7}}{7 \sqrt{7}}$
$(iv)$ $\frac{1}{\sqrt{2}}$
$(v)$ $2 \pi$
Find six rational numbers between $3$ and $4$.