दो वत्तों
$x ^{2}+ y ^{2}-10 x -10 y +41=0$ तथा $x ^{2}+ y ^{2}-16 x -10 y +80=0$
के लिए असत्य कथन चुनिए
दो केन्द्रों के बीच की दूरी दोनों वत्तों की त्रिज्याओं का माध्य है
दोनों वत्तों के केन्द्र एक दूसरे के आंतरिक भाग में है
दोनों वत्त एक दूसरे के केन्द्र से होकर जाते है
वत्तों के दो प्रतिच्छेदन बिन्दु है
उस वृत्त का समीकरण जो बिन्दु $(-2, 4)$ तथा वृत्त ${x^2} + {y^2} - 2x - 6y + 6 = 0$ और रेखा $3x + 2y - 5 = 0$ के प्रतिच्छेद बिन्दु से गुजरता है, होगा
वृत्त ${x^2} + {y^2} - 2x = 0$ द्वारा रेखा $y = x$ पर काटा गया अन्त:खण्ड $AB$ है। ऐसा वृत्त जिसका व्यास $AB$ है, का समीकरण है
वृत्तों $x^2+y^2-18 x-15 y+131=0$ तथा $\mathrm{x}^2+\mathrm{y}^2-6 \mathrm{x}-6 \mathrm{y}-7=0$ के उभयनिष्ठ स्पर्श रेखाओं की संख्या है :
माना सभी पूर्णांकों का समुच्चय $Z$ है,
$A =\left\{( x , y ) \in Z \times Z :( x -2)^{2}+ y ^{2} \leq 4\right\}$
$B =\left\{( x , y ) \in Z \times Z : x ^{2}+ y ^{2} \leq 4\right\}$ तथा
$C =\left\{( x , y ) \in Z \times Z :( x -2)^{2}+( y -2)^{2} \leq 4\right\}$ है। यदि $A \cap B$ से $A \cap C$ में संबंधों की कुल संख्या $2^{ P }$ है, तो $p$ का मान है
दो वृत्त ${x^2} + {y^2} - 2x + 6y + 6 = 0$ तथा ${x^2} + {y^2} - 5x + 6y + 15 = 0$ हैं