वृत्त ${x^2} + {y^2} - 2x = 0$ द्वारा रेखा $y = x$ पर काटा गया अन्त:खण्ड $AB$ है। ऐसा वृत्त जिसका व्यास $AB$ है, का समीकरण है
${x^2} + {y^2} - x - y = 0$
${x^2} + {y^2} - 2x - y = 0$
${x^2} + {y^2} - x + y = 0$
${x^2} + {y^2} + x - y = 0$
माना वृत्त $C$, बिन्दु $A (2,-1)$ तथा $B (3,4)$ से गुजरता है। रेखाखण्ड $AB$, वृत्त $C$ का व्यास नहीं है। यदि वृत्त $C$ की त्रिज्या $r$ तथा इसका केन्द्र, वृत्त $( x -5)^2+( y -1)^2=\frac{13}{2}$ पर स्थित है, तो $r ^2$ बराबर है :
बिन्दु $(2, 3)$ एक समाक्ष वृत्त निकाय का एक सीमान्त बिन्दु है जिसका वृत्त ${x^2} + {y^2} = 9$ एक सदस्य है। दूसरे सीमान्त बिन्दु के निर्देशांक होंगे
वृत्तों $3{x^2} + 3{y^2} - 7x + 8y + 11 = 0$ तथा ${x^2} + {y^2} - 3x - 4y + 5 = 0$ का मूलाक्ष है
वृत्तों ${x^2} + {y^2} + 2{g_1}x + 2{f_1}y + {c_1} = 0$ व ${x^2} + {y^2} + 2{g_2}x + 2{f_2}y + {c_2} = 0$ को लम्बवत् काटने वाले वृत्त के केन्द्र का बिन्दुपथ है
दो वत्तों
$x ^{2}+ y ^{2}-10 x -10 y +41=0$ तथा $x ^{2}+ y ^{2}-16 x -10 y +80=0$
के लिए असत्य कथन चुनिए