નીચે આપેલ વિતરણ માટે મધ્યક, વિચરણ અને પ્રમાણિત વિચલનની ગણતરી કરો :
વર્ગ |
$30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ | $80-90$ | $90-100$ |
આવૃત્તિ |
$3$ | $7$ | $12$ | $15$ | $8$ | $3$ | $2$ |
From the given data, we construct the following Table
Class |
Freq $\left( {{f_i}} \right)$ |
Mid-point $\left( {{x_i}} \right)$ |
${f_i}{x_i}$ | ${\left( {{x_i} - \bar x} \right)^2}$ | ${f_i}{\left( {{x_i} - \bar x} \right)^2}$ |
$30-40$ | $3$ | $35$ | $105$ | $729$ | $2187$ |
$40-50$ | $7$ | $45$ | $315$ | $289$ | $2023$ |
$50-60$ | $12$ | $55$ | $660$ | $49$ | $588$ |
$60-70$ | $15$ | $6$ | $975$ | $9$ | $135$ |
$70-80$ | $8$ | $75$ | $600$ | $169$ | $1352$ |
$80-90$ | $3$ | $85$ | $255$ | $529$ | $1587$ |
$90-100$ | $2$ | $95$ | $190$ | $1089$ | $2178$ |
$50$ | $3100$ | $10050$ |
Thus Mean $\bar x = \frac{1}{N}\sum\limits_{i = 1}^7 {{f_i}{x_i}} = \frac{{3100}}{{50}} = 62$
Variance $\left( {{\sigma ^2}} \right) = \frac{1}{N}\sum\limits_{i = 1}^7 {{f_i}{{\left( {{x_i} - \bar x} \right)}^2}} $
$ = \frac{1}{{50}} \times 10050 = 201$
and Standerd deviation $\left( \sigma \right) = \sqrt {201} = 14.18$
ટૂંકી રીતનો ઉપયોગ કરીને મધ્યક, વિચરણ અને પ્રમાણિત વિચલન શોધો.
ઊંચાઈ સેમીમાં |
$70-75$ | $75-80$ | $80-85$ | $85-90$ | $90-95$ | $95-100$ | $100-105$ | $105-110$ | $110-115$ |
બાળકોની સંખ્યા |
$3$ | $4$ | $7$ | $7$ | $15$ | $9$ | $6$ | $6$ | $3$ |
આપેલ માહિતી માટે પ્રમાણિત વિચલન મેળવો :
$\begin{array}{|l|l|l|l|l|l|l|} \hline X & 2 & 3 & 4 & 5 & 6 & 7 \\ f & 4 & 9 & 16 & 14 & 11 & 6 \\ \hline \end{array}$
જો બે $200$ અને $300$ અવલોકનો ધરાવતા સમૂહોનો મધ્યક અનુક્રમે $25, 10$ અને તેમનો $S.D.$ અનુક્રમે $3$ અને $4$ હોય તો બંને સમૂહોને ભેગા કરતાં $500$ અવલોકનો ધરાવતા નવા સમૂહનો વિચરણ મેળવો.
$6$ અવલોકનો $a$, $b,$ $68,$ $44,$ $48,$ $60$ ના મધ્યક અને વિચરણ અનુક્કમે $55$ અને $194$ છે. જો $a > b,$ તો $a +$ $3 b=$..........................
પ્રથમ $n$ પ્રાકૂર્તિક સંખ્યાનું વિચરણ $10$ છે અને પ્રથમ $m$ યુગ્મ પ્રાકૃતિક સંખ્યાનું વિચરણ $16$ હોય તો $m + n$ મેળવો.