Calculate the mean, variance and standard deviation for the following distribution:
Class | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ | $80-90$ | $90-100$ |
$f_i$ | $3$ | $7$ | $12$ | $15$ | $8$ | $3$ | $2$ |
From the given data, we construct the following Table
Class |
Freq $\left( {{f_i}} \right)$ |
Mid-point $\left( {{x_i}} \right)$ |
${f_i}{x_i}$ | ${\left( {{x_i} - \bar x} \right)^2}$ | ${f_i}{\left( {{x_i} - \bar x} \right)^2}$ |
$30-40$ | $3$ | $35$ | $105$ | $729$ | $2187$ |
$40-50$ | $7$ | $45$ | $315$ | $289$ | $2023$ |
$50-60$ | $12$ | $55$ | $660$ | $49$ | $588$ |
$60-70$ | $15$ | $6$ | $975$ | $9$ | $135$ |
$70-80$ | $8$ | $75$ | $600$ | $169$ | $1352$ |
$80-90$ | $3$ | $85$ | $255$ | $529$ | $1587$ |
$90-100$ | $2$ | $95$ | $190$ | $1089$ | $2178$ |
$50$ | $3100$ | $10050$ |
Thus Mean $\bar x = \frac{1}{N}\sum\limits_{i = 1}^7 {{f_i}{x_i}} = \frac{{3100}}{{50}} = 62$
Variance $\left( {{\sigma ^2}} \right) = \frac{1}{N}\sum\limits_{i = 1}^7 {{f_i}{{\left( {{x_i} - \bar x} \right)}^2}} $
$ = \frac{1}{{50}} \times 10050 = 201$
and Standerd deviation $\left( \sigma \right) = \sqrt {201} = 14.18$
If the standard deviation of the numbers $-1, 0, 1, k$ is $\sqrt 5$ where $k > 0,$ then $k$ is equal to
If the standard deviation of $0, 1, 2, 3, …..,9$ is $K$, then the standard deviation of $10, 11, 12, 13 …..19$ is
If each of given $n$ observations is multiplied by a certain positive number $'k'$, then for new set of observations -
If both the means and the standard deviation of $50$ observations $x_1, x_2, ………, x_{50}$ are equal to $16$ , then the mean of $(x_1 - 4)^2, (x_2 - 4)^2, …., (x_{50} - 4)^2$ is
The mean and variance of eight observations are $9$ and $9.25,$ respectively. If six of the observations are $6,7,10,12,12$ and $13,$ find the remaining two observations.