નીચે આપેલ આવૃત્તિ-વિતરણ માટે મધ્યક, વિચરણ અને પ્રમાણિત વિચલન શોધો.

વર્ગ $30-40$ $40-50$ $50-60$ $60-70$ $70-80$ $80-90$ $90-100$

આવૃત્તિ

$3$ $7$ $12$ $15$ $8$ $3$ $2$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let the assumed mean $A =65 .$ Here $h=10$

We obtain the following Table from the given data :

Class

Frequency

${f_i}$

Mid-point

${x_i}$

${y_i} = \frac{{{x_i} - 65}}{{10}}$ ${y_i}^2$ ${f_i}{y_i}$ ${f_i}{y_i}^2$
$30-40$ $3$ $35$ $-3$ $9$ $-9$ $27$
$40-50$ $7$ $45$ $-2$ $4$ $-14$ $28$
$50-60$ $12$ $55$ $-1$ $1$ $-12$ $12$
$60-70$ $15$ $65$ $0$ $0$ $0$ $0$
$70-80$ $8$ $75$ $1$ $1$ $8$ $8$
$80-90$ $3$ $85$ $2$ $4$ $6$ $12$
$90-100$ $2$ $95$ $3$ $9$ $6$ $18$
  $N=50$       $-15$ $105$

Therefore   $\bar x = A + \frac{{\sum {{f_i}{y_i}} }}{{50}} \times h = 65 - \frac{{15}}{{50}} \times 10 = 62$

Variance    ${\sigma ^2} = \frac{{{h^2}}}{{{N^2}}}\left[ {N{{\sum {{f_i}{y_i}} }^2} - {{\left( {\sum {{f_i}{y_i}} } \right)}^2}} \right]$

$=\frac{(10)^{2}}{(50)^{2}}\left[50 \times 105-(-15)^{2}\right]$

$=\frac{1}{25}[5250-225]=201$

and standard deviation $(\sigma)=\sqrt{201}=14.18$

Similar Questions

નીચે આપેલ આવૃત્તિ વિતરણનું વિચરણ શોધો.

$class$

$0 - 2$

$2 - 4$

$4 - 6$

$6 - 8$

 $8 - 10$

$10 - 12$

$f_i$

   $2$

   $7$

  $12$

  $19$

    $9$

    $ 1$

પ્રથમ $n$  પ્રાકૃતિક સંખ્યાઓનું પ્રમાણિત વિચલન = ………

જો $50$ અવલોકનો $x_1, x_2, ………, x_{50}$ નો મધ્યક અને પ્રમાણિત વિચલન બંને $16$ હોય તો $(x_1 - 4)^2, (x_2 - 4)^2, …., (x_{50} - 4)^2$ નો મધ્યક ................ થાય 

  • [JEE MAIN 2019]

ધારોકે નીચેના વિતરણ નું મધ્યક $\mu$ અને પ્રમાણિત વિચલન $\sigma$ છે. 

$X_i$ $0$ $1$ $2$ $3$ $4$ $5$
$f_i$ $k+2$ $2k$ $K^{2}-1$ $K^{2}-1$ $K^{2}-1$ $k-3$

 જ્યાં $\sum f_i=62$. જો $[x]$ એ મહત્તમ પૂર્ણાક $\leq x$ દર્શાવે,તો $\left[\mu^2+\sigma^2\right]=.......$

  • [JEE MAIN 2023]

વર્ગના $100$  વિર્ધાર્થીંઓના ગણિતના ગુણનો મધ્યક $72$ છે. જો છોકરાઓની સંખ્યા $70 $ હોય અને તેમના ગુણનો મધ્યક $75$  હોય તો વર્ગમાં છોકરીઓનાં ગુણનો મધ્યક શોધો ?