निम्नलिखित बंटन के लिए माध्य, प्रसरण व मानक विचलन ज्ञात कीजिए
वर्ग | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ | $80-90$ | $90-100$ |
बारंबारता | $3$ | $7$ | $12$ | $15$ | $8$ | $3$ | $2$ |
Let the assumed mean $A =65 .$ Here $h=10$
We obtain the following Table from the given data :
Class |
Frequency ${f_i}$ |
Mid-point ${x_i}$ |
${y_i} = \frac{{{x_i} - 65}}{{10}}$ | ${y_i}^2$ | ${f_i}{y_i}$ | ${f_i}{y_i}^2$ |
$30-40$ | $3$ | $35$ | $-3$ | $9$ | $-9$ | $27$ |
$40-50$ | $7$ | $45$ | $-2$ | $4$ | $-14$ | $28$ |
$50-60$ | $12$ | $55$ | $-1$ | $1$ | $-12$ | $12$ |
$60-70$ | $15$ | $65$ | $0$ | $0$ | $0$ | $0$ |
$70-80$ | $8$ | $75$ | $1$ | $1$ | $8$ | $8$ |
$80-90$ | $3$ | $85$ | $2$ | $4$ | $6$ | $12$ |
$90-100$ | $2$ | $95$ | $3$ | $9$ | $6$ | $18$ |
$N=50$ | $-15$ | $105$ |
Therefore $\bar x = A + \frac{{\sum {{f_i}{y_i}} }}{{50}} \times h = 65 - \frac{{15}}{{50}} \times 10 = 62$
Variance ${\sigma ^2} = \frac{{{h^2}}}{{{N^2}}}\left[ {N{{\sum {{f_i}{y_i}} }^2} - {{\left( {\sum {{f_i}{y_i}} } \right)}^2}} \right]$
$=\frac{(10)^{2}}{(50)^{2}}\left[50 \times 105-(-15)^{2}\right]$
$=\frac{1}{25}[5250-225]=201$
and standard deviation $(\sigma)=\sqrt{201}=14.18$
संख्याओं $a , b , 8,5,10$ का माध्य $6$ तथा इनका प्रसरण $6.8$ है। यदि माध्य के सापेक्ष संख्याओं का मानक विचलन $M$ है, तो $25\,M$ बराबर है
सात प्रेक्षणों के माध्य तथा प्रसरण क्रमशः $8$ तथा $16$ है। यदि इनमें से $5$ प्रेक्षण $2,4,10,12,14$ है, तो शेष दो प्रेक्षणों का गुणनफल है
माना $a_1$ के सभी मानों, जिनके लिए $100$ क्रमागत धनात्मक पूर्णांको $\mathrm{a}_1, \mathrm{a}_2, \mathrm{a}_3, \ldots ., \mathrm{a}_{100}$ का माध्य के सापेक्ष माध्य विचलन $25$ है, का समुच्चय $\mathrm{S}$ है, तब $\mathrm{S}$ बराबर है।
$10$ प्रेक्षणों के माध्य तथा मानक विचलन क्रमशः $20$ तथा $8$ हैं। बाद में यह पाया गया कि एक प्रेक्षण को $40$ के स्थान पर $50$ लिया गया था। तो सही प्रसरण है :
दो आंकड़ा समुच्चय, जिनमें से प्रत्येक में $5$ अवयव हैं के प्रसरण $4$ तथा $5$ हैं तथा उनके तदनुरूपी माध्य क्रमशः $2$ तथा $4$ हैं। मिश्रित आँकड़ा-समुच्चय का प्रसरण है