જો $50$ અવલોકનો $x_1, x_2, ………, x_{50}$ નો મધ્યક અને પ્રમાણિત વિચલન બંને $16$ હોય તો $(x_1 - 4)^2, (x_2 - 4)^2, …., (x_{50} - 4)^2$ નો મધ્યક ................ થાય
$400$
$380$
$525$
$480$
એક વર્ગના $10$ વિધ્યાર્થીઓના સરેરાશ ગુણ $60$ અને પ્રમાણિત વિચલન $4$ છે જ્યારે બીજા દસ વિધ્યાર્થીઓના સરેરાશ ગુણ $40$ અને પ્રમાણિત વિચલન $6$ છે જો બધા $20$ વિધ્યાર્થીઓને સાથે લેવામાં આવે તો પ્રમાણિત વિચલન મેળવો.
આપેલ અવલોકન $: 10, 14, 11, 9, 8, 12, 6$ નો ચલનાંક મેળવો.
અહી $\mathrm{X}$ એ વિતરણનું યાર્દચ્છિક ચલ છે.
$\mathrm{x}$ | $-2$ | $-1$ | $3$ | $4$ | $6$ |
$\mathrm{P}(\mathrm{X}=\mathrm{x})$ | $\frac{1}{5}$ | $\mathrm{a}$ | $\frac{1}{3}$ | $\frac{1}{5}$ | $\mathrm{~b}$ |
જો મધ્યક $X$ એ $2.3$ અને $X$ નું વિચરણ $\sigma^{2}$ હોય તો $100 \sigma^{2}$ ની કિમંત મેળવો.
$10$ વિદ્યાર્થીઓના ગુણના મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $50$ અને $12$ જોવામાં આવેલ છે.ત્યાર બાદ એવુ જોવામાં આવ્યું કે બે ગુણ $20$ અને $25$ ને ખોટી રીતે અનુક્રમે $45$ અને $50$ વાંચવામાં આવ્યા હતા. તો સાચું વિચરણ $......$ છે.
પ્રથમ $20$ પ્રાકૃતિક સંખ્યાઓનું વિચરણ શોધો.