निम्न समीकरण में वास्तविक हलों $x$ की संख्या होगी: $\cos ^2(x \sin (2 x))+\frac{1}{1+x^2}=\cos ^2 x+\sec ^2 x$
$0$
$1$
$2$
अनंत
यदि $2 \cos \theta+\sin \theta=1\left(\theta \neq \frac{\pi}{2}\right)$ है, तो $7 \cos \theta+6 \sin \theta$ बराबर है
$\cot \theta = \sin 2\theta $ (जहाँ $\theta \ne n\pi $ तथा $n$ एक पूर्णांक है), यदि $\theta = $
माना $S=\left\{\theta \in\left(0, \frac{\pi}{2}\right): \sum \limits_{m=1}^9 \sec \left(\theta+( m -1) \frac{\pi}{6}\right) \sec \left(\theta+\frac{ m \pi}{6}\right)=-\frac{8}{\sqrt{3}}\right\}$ है। तब
मान लीजिए $S=\{x \in R : \cos (x)+\cos (\sqrt{2} x) < 2\}$, तब
यदि त्रिभुज की भुजाएँ $\sin \alpha ,\,\cos \alpha $ और $\sqrt {1 + \sin \alpha \cos \alpha } $ $\left( {tcfd\,0 < \alpha < \frac{\pi }{2}} \right)$ हैं, तब त्रिभुज का महत्तम कोण.....$^o$ है