A tangent $P T$ is drawn to the circle $x^2+y^2=4$ at the point $P(\sqrt{3}, 1)$. A straight line $L$, perpendicular to $P T$ is a tangent to the circle $(x-3)^2+y^2=1$.

$1.$ A common tangent of the two circles is

$(A)$ $x=4$ $(B)$ $y=2$ $(C)$ $x+\sqrt{3} y=4$ $(D)$ $x+2 \sqrt{2} y=6$

$2.$ A possible equation of $L$ is

$(A)$ $x-\sqrt{3} y=1$ $(B)$ $x+\sqrt{3} y=1$ $(C)$ $x-\sqrt{3} y=-1$ $(D)$ $x+\sqrt{3} y=5$

Give the answer question $1$ and $2.$

  • [IIT 2012]
  • A

    $(D,A)$

  • B

    $(B,D)$

  • C

    $(B,C)$

  • D

    $(C,D)$

Similar Questions

Tangents are drawn from the point $(4, 3)$ to the circle ${x^2} + {y^2} = 9$. The area of the triangle formed by them and the line joining their points of contact is

  • [IIT 1987]

The tangent at $P$, any point on the circle ${x^2} + {y^2} = 4$, meets the coordinate axes in $A$ and $B$, then

If the line $3x + 4y - 1 = 0$ touches the circle ${(x - 1)^2} + {(y - 2)^2} = {r^2}$, then the value of $r$ will be

The equation of the tangents to the circle ${x^2} + {y^2} + 4x - 4y + 4 = 0$ which make equal intercepts on the positive coordinate axes is given by

Let $O$ be the centre of the circle $x ^2+ y ^2= r ^2$, where $r >\frac{\sqrt{5}}{2}$. Suppose $P Q$ is a chord of this circle and the equation of the line passing through $P$ and $Q$ is $2 x+4 y=5$. If the centre of the circumcircle of the triangle $O P Q$ lies on the line $x+2 y=4$, then the value of $r$ is. . . .

  • [IIT 2020]