माना $y=x+2,4 y=3 x+6$ तथा $3 y=4 x+1$ वृत्त $(\mathrm{x}-\mathrm{h})^2+(\mathrm{y} \mathrm{k})^2=\mathrm{r}^2$ की तीन स्पर्श रेखाएँ हैं, तो $\mathrm{h}+\mathrm{k}$ बराबर है :
$5$
$5(1+\sqrt{2})$
$6$
$5 \sqrt{2}$
$\mathrm{a}^2$ के सभी मानों, जिनके लिए रेखा $\mathrm{x}+\mathrm{y}=0$, वृत $2 x^2+2 y^2-(1+a) x-(1-a) y=0$ के बिंदु $\mathrm{P}\left(\frac{1+\mathrm{a}}{2}, \frac{1-\mathrm{a}}{2}\right)$ से खींची गई दो भिन्न जीवाओं को समद्विभाजित करती है, का समुच्चय बराबर है:
उस वृत्त का समीकरण जिसकी त्रिज्या $5$ है तथा जो वृत्त ${x^2} + {y^2} - 2x - 4y - 20 = 0$ को बिन्दु $(5, 5)$ पर बाह्यत: स्पर्श करता है, होगा
बिन्दु $(4, 3)$ से वृत्त ${x^2} + {y^2} = 9$ पर स्पर्श रेखाएँ खींची गयी हैं। इन स्पर्श रेखाओं और इनके स्पर्श बिन्दुओं को मिलाने वाली रेखा से बने त्रिभुज का क्षेत्रफल है
रेखा $3x + 4y = 1$ के समान्तर वृत्त $5{x^2} + 5{y^2} = 1$ की स्पर्श रेखा का समीकरण है
वृत्तों ${x^2} + {y^2} - x + y - 8 = 0$ व ${x^2} + {y^2} + 2x + 2y - 11 = 0,$ के बीच का कोण है