रेखा $3x + 4y = 1$ के समान्तर वृत्त $5{x^2} + 5{y^2} = 1$ की स्पर्श रेखा का समीकरण है
$3x + 4y = \pm 2\sqrt 5 $
$6x + 8y = \pm \sqrt 5 $
$3x + 4y = \pm \sqrt 5 $
इनमें से कोई नहीं
$y - x + 3 = 0$, बिन्दु $\left( {3 + \frac{3}{{\sqrt 2 }},\frac{3}{{\sqrt 2 }}} \right)$ पर किस वृत्त का अभिलम्ब है
बिन्दु $(0,1)$ से होकर जाने वाले तथा परवलय $y = x ^{2}$ को बिन्दु $(2,4)$ पर स्पर्श करने वाले वृत का केन्द्र है
यदि रेखा $x = k$ वृत्त ${x^2} + {y^2} = 9$ का स्पर्श करती हो, तो $k$ का मान है
माना वत्त $x ^{2}+ y ^{2}=25$ के बिंदु $R (3,4)$ पर स्पर्श रेखा $x$-अक्ष तथा $y$-अक्ष को क्रमशः बिंदुओं $P$ तथा $Q$ पर मिलती है। यदि मूलबिंदु $O$ से होकर जाने वाले वत्त, जिसका केन्द्र त्रिभुज $OPQ$ का अंतः केन्द्र है, की त्रिज्या $r$ है, तो $r^{2}$ बराबर है
वृत्त ${x^2} + {y^2} - 8x - 2y + 12 = 0$ के उन बिन्दुओं पर जिसकी कोटि $-1$ है, अभिलम्ब के समीकरण होंगे