નિશ્રિત બિંદુ $\left( {2,3} \right)$ માંથી પસાર થતી રેખા યામાક્ષોને ભિન્ન બિંદુઓ $P$ અને $Q$ માં છેદે છે. જો $O$ એ ઊગમબિંદુ હોય અને લંબચોરસ $OPRQ$ ને પૂરો કરાવામાં આવે ,તો $R$ નો બિંદુપથ . . .. . છે.
$2x + 3y = xy$
$3x + 2y = xy$
$3x + 2y = 6xy$
$3x + 2y = 6$.
લંબચોરચની એક બાજુનું સમીકરણ $4x + 7y + 5 = 0$ છે . જો બે શિરોબિંદુઓ $(-3, 1)$ અને $(1, 1)$ હોય તો બાકીની ત્રણ બાજુઓ મેળવો.
બિંદુઓ $(1, 3)$ અને $(5, 1)$ એ લંબચોરસના સામસામેના શિરોબિંદુઓ છે.જો બાકીના બે શિરોબિંદુઓ રેખા $y = 2x + c,$ પર આવેલ હોય તો $c$ મેળવો.
બિંદુ $(2, 2)$ માંથી પસાર થતી સુરેખા એ રેખાઓ $\sqrt 3 \,x\,\, + \,\,y\,\, = \,\,0$ અને $\sqrt 3 x\, - \,\,y\,\, = \,\,0$ ને $A$ અને $B$ બિંદુ આગળ છેદે છે. રેખા $AB$ નું સમીકરણ શોધો કે જેથી ત્રિકોણ $OAB$ સમબાજુ ત્રિકોણ બને -
જો $P = (1, 0) ; Q = (-1, 0) \,\,અને,\, R = (2, 0)$ એ ત્રણ બિંદુઓ આપેલ હોય તો બિંદુ $S$ ના બિંદુપથનું સમીકરણ ............ દર્શાવે કે જેના માટે $SQ^2 + SR^2 = 2 SP^2$ થાય
$ℓx + my + n = 0, ℓx + my + n' = 0, mx + ℓy + n = 0, mx + ℓy + n' = 0$ બાજુવાળા સમાંતરબાજુ ચતુષ્કોણના વિકર્ણ કેટલાના અંત:કોણ ધરાવે છે.