A straight the through a fixed point $(2, 3)$ intersects the coordinate axes at distinct points $P$ and $Q.$ If $O$ is the origin and the rectangle $OPRQ$ is completed, then the locus of $R$ is:
$2x + 3y = xy$
$3x + 2y = xy$
$3x + 2y = 6xy$
$3x + 2y = 6$.
In an isosceles triangle $ABC, \angle C = \angle A$ if point of intersection of bisectors of internal angles $\angle A$ and $\angle C$ divide median of side $AC$ in $3 : 1$ (from vertex $B$ to side $AC$), then value of $cosec \ \frac{B}{2}$ is equal to
The points $(1, 3)$ and $(5, 1)$ are the opposite vertices of a rectangle. The other two vertices lie on the line $y = 2x + c,$ then the value of c will be
Find the area of the triangle formed by the line $y-x=0, x+y=0$ and $x-k=0$.
If the three lines $x - 3y = p, ax + 2y = q$ and $ax + y = r$ form a right-angled triangle then
Area of the parallelogram whose sides are $x\cos \alpha + y\sin \alpha = p$ $x\cos \alpha + y\sin \alpha = q,\,\,$ $x\cos \beta + y\sin \beta = r$ and $x\cos \beta + y\sin \beta = s$ is