एक स्तम्भ, जिसमें $\eta $ श्यानता गुणांक का श्यान द्रव भरा है, में से होकर एक स्टील की छोटी गेंद जिसकी त्रिज्या $r$ है, को गुरुत्वीय त्वरण के अधीन गिराया जाता है। कुछ समय पश्चात गेंद एक नियत मान ${v_T}$ जिसे सीमान्त मान कहते है, को प्राप्त कर लेती है। सीमान्त वेग ${\rm{(i)}}$गेंद के द्रव्यमान $m$ पर ${\rm{(ii)}}$ $\eta $ पर ${\rm{(iii)}}$ $r$ पर ${\rm{(iv)}}$ और गुरुत्वीय त्वरण $g$ पर निर्भर करता है। निम्न में से कौनसा सम्बन्ध विमीय रुप से सही है
${v_T} \propto \frac{{mg}}{{\eta r}}$
${v_T} \propto \frac{{\eta r}}{{mg}}$
${v_T} \propto \eta rmg$
${v_T} \propto \frac{{mgr}}{\eta }$
किसी वृत्त की समीकरण $\mathrm{x}^2+\mathrm{y}^2=\mathrm{a}^2$, हैं जहां $\mathrm{a}$ त्रिज्या है। मूलबिन्दु का मान $(0,0)$, से बदलने पर यदि समीकरण परिवर्तित होती है तो नए समीकरण $(x-A t)^2+\left(y-\frac{t}{B}\right)^2=a^2$ में $A$ एवं $B$ की सही विमाएं ज्ञात कीजिए। $t$ की विमाएं $\left[\mathrm{T}^{-1}\right]$ है।
$r$ त्रिज्या एवं $l$ लम्बाई की एक नली जिसके सिरे पर दाबान्तर $p$ है, से $\eta $ श्यानता का द्रव बह रहा है, तब प्रति सैकण्ड बहने वाले द्रव के आयतन $V$ के लिये विमीय रुप के संगत सम्बन्ध है
$m$ द्रव्यमान एवं $r$ त्रिज्या की एक गोलीय वस्तु $\eta $ श्यानता के माध्यम में गिर रही है। वह समय जिसमें वस्तु का वेग शून्य से बढ़कर सीमान्त (टर्मिनल) वेग $v$ का $0.63$ गुना हो जाता है, समय नियतांक $\tau $ कहलाता है। विमीय रुप से $\tau $ को किसके द्वारा व्यक्त कर सकते हैं
स्टोक के नियमानुसार, एक $a$ त्रिज्या का गोला जो कि , श्यानता गुणांक (coefficient of viscosity) के द्रव में $V$ चाल में चलता है, पर श्यानकर्षण बल (viscous drag) $F$ निम्न समीकरण से निरूपित किया जाता है : $F=a \eta_a v$ आयतन $V$ को निम्न समीकरण से निरूपित किया जा सकता है $\frac{V}{t}=k\left(\frac{p}{l}\right)^a \eta^b r^c$ जहाँ ${ }^k$ विमाविहीन स्थिरांक है। तो ${ }^a$, और $^c$ के सही मान क्या है ?
यदि पृष्ठ तनाव $( S )$, जड़त्व आघूर्ण $( I )$ तथा प्लांक नियतांक $(h)$ को मूलभूत इकाई मानें तो रेखीय संवेग का विमा सूत्र होगा।