$r$ त्रिज्या एवं $l$ लम्बाई की एक नली जिसके सिरे पर दाबान्तर $p$ है, से $\eta $ श्यानता का द्रव बह रहा है, तब प्रति सैकण्ड बहने वाले द्रव के आयतन $V$ के लिये विमीय रुप के संगत सम्बन्ध है
$V = \frac{{\pi p{r^4}}}{{8\eta l}}$
$V = \frac{{\pi \eta l}}{{8p{r^4}}}$
$V = \frac{{8p\eta l}}{{\pi {r^4}}}$
$V = \frac{{\pi p\eta }}{{8l{r^4}}}$
प्लांक स्थिरांक $h$, प्रकाश की चाल $c$ तथा गुरूत्वाकर्षण स्थिरांक $G$ को लम्बाई की इकाई $L$ तथा द्रव्यमान की इकाई $M$ बनाने के लिए प्रयोग किया जाता है। तब सही कथन है (है)
$(A)$ $M \propto \sqrt{ c }$ $(B)$ $M \propto \sqrt{ G }$ $(C)$ $L \propto \sqrt{ h }$ $(D)$ $L \propto \sqrt{G}$
कोई बल $F = at + b{t^2}$से प्रदर्शित किया जाता है, जहाँ $t$ समय है $a$ व $b$ की विमायें होगी
कभी-कभी मात्रकों की एक पद्धति का निर्माण करना सुविधाजनक होता है ताकि सभी राशियों को केवल एक भौतिक राशि के पदों में व्यक्त किया जा सके। इस प्रकार की पद्धति में, विभिन्न राशियों की विमाओं को राशि $X$ के पदों में निम्नानुसार दिया गया है: $[$ स्थिति $]=\left[ X ^{ \alpha }\right]$; [चाल $]=\left[ X ^\beta\right]$; [त्वरण $]=\left[ X ^{ p }\right]$; [रेखीय संवेग $]=\left[ X ^{ q }\right] ;[$ बल $]=\left[ X ^{ R }\right]$ । तब
$(A)$ $\alpha+ p =2 \beta$
$(B)$ $p + q - r =\beta$
$(C)$ $p - q + r =\alpha$
$(D)$ $p+q+r=\beta$