एक समूह में $2n + 1$ अवयव होते हैं। इस समूह के उपसमूहों की संख्या, जिसमें $n$ से अधिक अवयव होते हैं, बराबर है, कितनी होगी?
${2^{n - 1}}$
${2^n}$
${2^{n + 1}}$
${2^{2n}}$
$8$ पुरूषों तथा $ 4$ महिलाओं को लेकर $6$ सदस्यों की एक समिति कितने प्रकार से बनाई जा सकती है, जबकि कम से कम $3$ महिलायें सदैव सम्मिलित रहें
अऋणात्मक पूर्णांको $s$ तथा $r$ के लिये, माना $\binom{s}{r}=\left\{\begin{array}{ll}\frac{s!}{r!(s-r)!} & \text { if } r \leq s \\ 0 & \text { if } r>s\end{array}\right.$
धनात्मक पूर्णांकों $m$ तथा $n$ के लिये, माना $(m, n) \sum_{ p =0}^{ m + n } \frac{ f ( m , n , p )}{\binom{ n + p }{ p }}$ जहाँ किसी अॠणात्मक पूर्णांक $p$, के लिये
$f(m, n, p)=\sum_{i=0}^{ p }\binom{m}{i}\binom{n+i}{p}\binom{p+n}{p-i}$ तब निम्न में से कौनसा/कौनसे कथन सत्य होगा/होंगे?
$(A)$ सभी धनात्मक पूर्णांको $m$, के लिये $g ( m , n )= g ( n , m )$ होगा।
$(B)$ सभी धनात्मक पूर्णांकों $m , n$ के लिये $g ( m , n +1)= g ( m +1, n )$ होगा।
$(C)$ सभी धनात्मक पूर्णांकों $m , n$ के लिये $g (2 m , 2 n )=2 g ( m , n )$ होगा।
$(D)$ सभी धनात्मक पूर्णांकों $m , n$ के लिये $g (2 m , 2 n )=( g ( m , n ))^2$ होगा।
यदि $^n{P_r} = 840,{\,^n}{C_r} = 35,$ तब $n$ का मान है
शब्द ‘$CORGOO’$ से चार अक्षरों के चयन करने के कुल प्रकारों की संख्या है
यदि $^{15}{C_{3r}}{ = ^{15}}{C_{r + 3}}$, तो $r$ का मान होगा