A set contains $2n + 1$ elements. The number of subsets of this set containing more than $n$ elements is equal to
${2^{n - 1}}$
${2^n}$
${2^{n + 1}}$
${2^{2n}}$
Out of $6$ books, in how many ways can a set of one or more books be chosen
The value of $\sum\limits_{r = 1}^{15} {{r^2}\,\left( {\frac{{^{15}{C_r}}}{{^{15}{C_{r - 1}}}}} \right)} $ is equal to
For non-negative integers $s$ and $r$, let
$\binom{s}{r}=\left\{\begin{array}{ll}\frac{s!}{r!(s-r)!} & \text { if } r \leq s \\ 0 & \text { if } r>s\end{array}\right.$
For positive integers $m$ and $n$, let
$(m, n) \sum_{ p =0}^{ m + n } \frac{ f ( m , n , p )}{\binom{ n + p }{ p }}$
where for any nonnegative integer $p$,
$f(m, n, p)=\sum_{i=0}^{ p }\binom{m}{i}\binom{n+i}{p}\binom{p+n}{p-i}$
Then which of the following statements is/are $TRUE$?
$(A)$ $(m, n)=g(n, m)$ for all positive integers $m, n$
$(B)$ $(m, n+1)=g(m+1, n)$ for all positive integers $m, n$
$(C)$ $(2 m, 2 n)=2 g(m, n)$ for all positive integers $m, n$
$(D)$ $(2 m, 2 n)=(g(m, n))^2$ for all positive integers $m, n$
In a club election the number of contestants is one more than the number of maximum candidates for which a voter can vote. If the total number of ways in which a voter can vote be $62,$ then the number of candidates is :-
Suppose Anil's mother wants to give $5$ whole fruits to Anil from a basket of $7$ red apples, $5$ white apples and $8$ oranges. If in the selected $5$ fruits, at least $2$ orange, at least one red apple and at least one white apple must be given, then the number of ways, Anil's mother can offer $5$ fruits to Anil is $........$