एक घन $\overrightarrow{ E }=150 y ^{2} \hat{ j }$ के विधुत क्षेत्र में रखा है। घन की भुजा $0.5\, m$ है तथा यह क्षेत्र में चित्रानुसार रखा है। घन के अन्दर आवेश $.....\times 10^{-11} {C}$ है।
$3.8$
$8.3$
$0.38$
$830$
एक घन जिसकी भुजा $l$ है, को एकसमान विद्युत क्षेत्र में रखा जाता है जबकि है। इस घन से निकलने वाले फ्लक्स का मान होगा
रेखीय आवेश घनत्व $\lambda$ का एक रेखीय आवेश चित्र में दिखाये अनुसार एक घन को विकर्णत: और फिर एक गोले को व्यास के अनुदिश भेदता हैं। घन और गोले से निर्गत फ्लक्स का अनुपात होगा
चित्रानुसार एक स्थिरवैद्युत क्षेत्र रेखा, बिन्दु आवेश $q_1$ से कोण $\alpha$ पर निकलती है तथा बिन्दु आवेश $-q_2$ से कोण $\beta$ पर मिलती है। यहाँ $q _1$ तथा $q _2$ दोनों धनात्मक हैं। यदि $q _2=\frac{3}{2} q _1$ तथा $\alpha=30^{\circ}$, तब
चित्र में विध्यूत क्षेत्र अवयव $E_{x}=\alpha x^{1 / 2}, E_{y}=E_{z}=0$ है, जिसमें $\alpha=800 \,N / C m ^{1 / 2}$ है। $(a)$ घन से गुजरने वाला फ्लक्स, तथा $(b)$ घन के भीतर आवेश परिकलित कीजिए। $a=0.1 \,m$ मानिए
यदि एक आवेश $q$ को एक अचालक बंद अर्द्धगोलाकार सतह के केन्द्र पर रखा जाता है तो समतल सतह से गुजरने वाला कुल फ्लक्स होगा