चित्र में विध्यूत क्षेत्र अवयव $E_{x}=\alpha x^{1 / 2}, E_{y}=E_{z}=0$ है, जिसमें $\alpha=800 \,N / C m ^{1 / 2}$ है। $(a)$ घन से गुजरने वाला फ्लक्स, तथा $(b)$ घन के भीतर आवेश परिकलित कीजिए। $a=0.1 \,m$ मानिए

897-11

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$(a)$ since the electric field has only an $x$ component, for faces perpendicular to $x$ direction, the angle between $E$ and $\Delta S$ is $\pm \pi / 2 .$ Therefore, the flux $\phi= E . \Delta S$ is separately zero for each face of the cube except the two shaded ones. Now the magnitude of the electric fleld at the left face $1 s$ $E_{L}=\alpha x^{1 / 2}=\alpha a^{1 / 2}$

$(x=a \text { at the left face })$ The magnitude of electric fleld at the right face is $E_{R}=\alpha x^{1 / 2}=\alpha(2 a)^{1 / 2}$

$(x=2 a$ at the right face). The corresponding fluxes are

$\phi_{L}= E _{L} \cdot \Delta S =\Delta S E _{L} \cdot \hat{ n }_{L}=E_{L} \Delta S \cos \theta$$=-E_{L} \Delta S,$ since $\theta=180^{\circ}$

$=-E_{L} a^{2}$

$\phi_{R}= E _{R} \cdot \Delta S =E_{R} \Delta S \cos \theta=E_{R} \Delta S,$ since $\theta=0^{\circ}$

$=E_{R} a^{2}$

Net flux through the cube 

$=\phi_{R}+\phi_{L}=E_{R} a^{2}-E_{L} a^{2}=a^{2}\left(E_{R}-E_{L}\right)$$=\alpha a^{2}\left[(2 a)^{1 / 2}-a^{1 / 2}\right]$

$=\alpha a^{5 / 2}(\sqrt{2}-1)$

$=800(0.1)^{5 / 2}(\sqrt{2}-1)$

$=1.05 \,N\, m ^{2} \,C ^{-1}$

$(b)$ We can use Gauss's law to find the total charge $q$ inside the cube.

We have $\phi=q / \varepsilon_{0}$ or $q=\phi \varepsilon_{0} .$

Therefore $q=1.05 \times 8.854 \times 10^{-12}\, C =9.27 \times 10^{-12} \,C$

Similar Questions

किसी दिए गए तल के लिए ‘गॉस का नियम’ इस प्रकार लिखते हैं  इससे हम यह निष्कर्ष निकाल सकते हैं कि

किसी बन्द पृष्ठ से अन्दर की ओर तथा बाहर की ओर विद्युत फ्लक्स $N - {m^2}/C$ इकाईयों में क्रमश: $8 \times {10^3}$ व $4 \times {10^3}$ है तो पृष्ठ के अन्दर कुल आवेश होगा [जहाँ ${ \in _0} = $ विद्युतशीलता है

एक लम्बे बेलनाकार आयतन में एक समान आवेश घनत्व $\rho$ वितरित है। बेलनाकार आयतन की त्रिज्या $R$ है। एक आवेश कण $(q)$ बेलन के चारों तरफ वृत्ताकार पथ में घुमता है। आवेश कण की गतिज ऊर्जा है $....$ 

  • [JEE MAIN 2022]

कोई विध्यूत क्षेत्र धनात्मक $x$ के लिए, धनात्मक $x$ दिशा में एकसमान है तथा उसी परिमाण के साथ परंतु ऋणात्मक $x$ के लिए, ऋ्णात्मक $x$ दिशा में एकसमान है। यह दिया गया है कि $E =200 \hat{ i }$ \,N/C जबकि $x>0$ तथा $E =-200 \hat{ i }\, N/C,$ जबकि $x<0$ है। $20 \,cm$ लंबे $5 \,cm$ त्रिज्या के किसी लंबवृत्तीय सिलिंडर का केंद्र मूल बिंदु पर तथा इस अक्ष $x$ के इस प्रकार अनुदिश है कि इसका एक फलक चित्र में दर्शाए अनुसार $x=+10\, cm$ तथा दूसरा फलक $x=-10\, cm$ पर है। $(a)$ प्रत्येक चपटे फलक से गुजरने वाला नेट बहिर्मुखी फ्लक्स कितना है? $(b)$ सिलिंडर के पाशर्व से गुजरने वाला फ्लक्स कितना है? $(c)$ सिलिंडर से गुजरने वाला नेट बहिर्मुखी फ्लक्स कितना है? $(d)$ सिलिंडर के भीतर नेट आवेश कितना है?

एक आवेश $q$ बेलनाकार पात्र के खुले मुँह के केन्द्र पर रखा है इस पात्र की सतह से गुजरने वाला फ्लक्स होगा