चित्रानुसार एक स्थिरवैद्युत क्षेत्र रेखा, बिन्दु आवेश $q_1$ से कोण $\alpha$ पर निकलती है तथा बिन्दु आवेश $-q_2$ से कोण $\beta$ पर मिलती है। यहाँ $q _1$ तथा $q _2$ दोनों धनात्मक हैं। यदि $q _2=\frac{3}{2} q _1$ तथा $\alpha=30^{\circ}$, तब

210350-q

  • [KVPY 2018]
  • A

    $0^{\circ} < \beta<30^{\circ}$

  • B

    $\beta=30^{\circ}$

  • C

    $30^{\circ} < \beta \leq 60^{\circ}$

  • D

    $60^{\circ} < \beta \leq 90^{\circ}$

Similar Questions

${q_1},\;{q_2},\;{q_3}$ व ${q_4}$ बिन्दु आवेश चित्रानुसार स्थित हैं। $S$ एक $R$ त्रिज्या का गॉसीय पृष्ठ है। गॉस नियम के अनुसार निम्न में से क्या सही है

नीचे दो कथन दिए गए है, एक को अभिकथन $A$ एवं दूसरे को कारण $\mathrm{R}$ कहा गया है

अभिकथन $\mathrm{A}$ : यदि $30 \times 10^{-5} \mathrm{Cm}$ द्विध्रुव आघूर्ण वाला एक विद्युत द्विध्रुव, किसी बंद पृष्ठ से घिरा है, तो पृष्ठ

से निकलने वाले कुल फ्लक्स का मान शून्य होगा।

कारण $R$ : विद्युत द्विध्रुव में दो समान एवं विपरीत आवेश होते हैं।

उपर्युक्त कथनों के प्रकाश में, नीचे दिए गए विकल्पों में से सही उत्तर चुनें।

  • [JEE MAIN 2023]

$1$ मिलीमीटर त्रिज्या के सीधे लम्बे तार पर एकसमान आवेश वितरित है। तार पर प्रति सेमी. लम्बाई आवेश $Q$ कूलॉम है। अन्य बेलनाकार पृष्ठ जिसकी त्रिज्या $50$ सेमी. तथा लम्बाई $1$ मीटर है चित्रानुसार सममिति रूप से तार को घेरता है। बेलनाकार पृष्ठ से गुजरने वाला कुल विद्युत फ्लक्स है

मूलबिन्दु पर अवस्थित $2 \times 10^{-9}\, m ^{3}$ के किसी वार्धिक आयतन में परिबद्ध कुल आवेश $......\,nC$ होगा, यदि इसके क्षेत्र का विधुत फ्लक्स घनत्व $D = e ^{- x } \sin y \hat{ i }- e ^{- x } \cos y \hat{ j }+2 z \hat{ k } C / m ^{2}$ पाया जाता है।

  • [JEE MAIN 2021]

किसी बिंदु आवेश के कारण उस बिंदु को केंद्र मानकर खींचे गए $10\, cm$ त्रिज्या के गोलीय गाउसीय पृष्ठ पर वैध्युत फ्लक्स $-1.0 \times 10^{3} Nm ^{2} / C$ । $(a)$ यदि गाउसीय पृष्ठ की शिज्या दो गुनी कर दी जाए तो पृष्ठ से कितना फ्लक्स गुजरेगा? $(b)$ बिंदु आवेश का मान क्या है?