रेखीय आवेश घनत्व $\lambda$  का एक रेखीय आवेश चित्र में दिखाये अनुसार एक घन को विकर्णत: और फिर एक गोले को व्यास के अनुदिश भेदता हैं। घन और गोले से निर्गत फ्लक्स का अनुपात होगा

115-744

  • A

    $\frac{1}{2}$

  • B

    $\frac{2}{{\sqrt 3 }}$

  • C

    $\frac{{\sqrt 3 }}{2}$

  • D

    $\frac{1}{1}$

Similar Questions

$\alpha $ भुजा वाले एक घन के केन्द्र पर एक विद्युत आवेश $q$ रखा गया है। इसके फलकों में से एक फलक पर वैद्युत अभिवाह (electric flux) का मान होगा

  • [AIIMS 2001]

चित्र एक विद्युत् क्षेत्र के संगत कुछ विद्युत् क्षेत्र रेखाएँ प्रदर्शित करता है। चित्र बताता है कि

एक लम्बे बेलनाकार आयतन में एक समान आवेश घनत्व $\rho$ वितरित है। बेलनाकार आयतन की त्रिज्या $R$ है। एक आवेश कण $(q)$ बेलन के चारों तरफ वृत्ताकार पथ में घुमता है। आवेश कण की गतिज ऊर्जा है $....$ 

  • [JEE MAIN 2022]

एक घनाकार आयतन सतहों $\mathrm{x}=0, \mathrm{x}=\mathrm{a}, \mathrm{y}=0$, $\mathrm{y}=\mathrm{a}, \mathrm{z}=0, \mathrm{z}=\mathrm{a}$ से परिबद्ध है। इस प्रभाग में विधुत क्षेत्र $\overrightarrow{\mathrm{E}}=\mathrm{E}_0 \mathrm{x} \hat{\mathrm{i}}$ दिया गया है, जहाँ $\mathrm{E}_0=4 \times 10^4 \mathrm{NC}^{-1} \mathrm{~m}^{-1}$ है। यदि $\mathrm{a}=2 \mathrm{~cm}$ है तो घनाकार आयतन में परिबद्ध आवेश $\mathrm{Q} \times 10^{-14} \mathrm{C}$ है। $\mathrm{Q}$ का मान______________ है। $\left(\epsilon_0=9 \times 10^{-12} \mathrm{C}^2 / \mathrm{Nm}^2\right)$

  • [JEE MAIN 2023]

मान लीजिए कि एक बिंदु आवेश $q$ के द्वारा $r$ दूरी पर उत्पन्न विद्युतीय क्षेत्र $E$ व्युत-वर्गानुपाति (inverse square) न हो के बल्कि व्युत-घनानुपाति (inverse cubic) है | जैसे कि $\vec{E}=k \frac{q}{r^3} \hat{r}$ जहाँ $k$ एक नियतांक है | निम्नलिखित दो कथनों पर विचार करें ।

$(i)$ आवेश को परिबद्ध (enclosing) करने वाले एक गोलीय पृष्ठ से निकलने वाले विद्युत अभिवाह (flux), $\phi=q_{\text {enclosed }} / \epsilon_0$

$(ii)$ एकसमान रूप से आवेशित खोखले कोष के अन्दर स्थित आवेश पर एक बल लगेगा ।

सही विकल्प का चयन करें

  • [KVPY 2017]