$9$ लड़के और $4$ लड़कियों से $7$ सदस्यों की एक समिति बनानी हैं यह कितने प्रकार से किया जा सकता है, जबकि समिति में न्यूनतम $3$ लड़कियाँ हैं ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

since at least $3$ girls are to be there in every committee, the committee can consist of

$(a)$ $3$ girls and $4$ boys or

$(b)$ $4$ girls and $3$ boys

$3$ girls and $4$ boys can be selected in $^{4} C_{3} \times^{9} C_{4}$ ways.

$4$ girls and $3$ boys can be selected in $^{4} C_{4} \times^{9} C_{3}$ ways.

Therefore, in this case, required number of ways $=^{4} C_{3} \times^{9} C_{4}+^{4} C_{4} \times^{9} C_{3}$

$=504+84=588$

Similar Questions

एक परीक्षा में गणित के प्रश्नपत्र में बराबर अंकों के $20$ प्रश्न हैं तथा प्रश्नपत्र में तीन खंड : $\mathrm{A}, \mathrm{B}$ और $\mathrm{C}$ है। एक विद्यार्थी को कुल $15$ प्रश्नों के उत्तर देने हैं, जिनमें प्रत्येक खंड से कम से कम 4 प्रश्न होने चाहिए। यदि खंड $\mathrm{A}$ में $8$ प्रश्न, खंड $\mathrm{B}$ में $6$ प्रश्न तथा खंड $\mathrm{C}$ में $6$ प्रश्न तथा खंड $\mathrm{C}$ में $6$ प्रश्न हैं, तो एक विद्यार्थी द्वारा $15$ प्रश्न चुनने के तरीकों की कुल संख्या है .............

  • [JEE MAIN 2024]

यदि ${ }^{ n } P _{ r }={ }^{ n } P _{ r +1}$ तथा ${ }^{ n } C _{ r }={ }^{ n } C _{ I -1}$ है, तो $r$ बराबर है

  • [JEE MAIN 2021]

एक विद्यार्थी को किसी परीक्षा में $13$ में से $10$ प्रश्नों का उत्तर इस प्रकार देना है कि वह प्रथम पांच प्रश्नों में से कम से कम $4$ प्रश्न का चुनाव कर सकता है, तो वह कुल कितने प्रकार से प्रश्नों का उत्तर दे सकता है

  • [AIEEE 2003]

यदि $x,\;y$ तथा $r$ धनात्मक पूर्णांक हैं, तब $^x{C_r}{ + ^x}{C_{r - 1}}^y{C_1}{ + ^x}{C_{r - 2}}^y{C_2} + .......{ + ^y}{C_r} = $

एक पिता $8$ बच्चों में से $3$ बच्चों को एक बार में एक साथ लेकर पशु उद्यान इस प्रकार जाता है कि तीन समान बच्चे एक साथ एक से अधिक बार नहीं जा सकते, तब प्रत्येक बच्चा कितनी बार उद्यान जाएगा