यदि $x,\;y$ तथा $r$ धनात्मक पूर्णांक हैं, तब $^x{C_r}{ + ^x}{C_{r - 1}}^y{C_1}{ + ^x}{C_{r - 2}}^y{C_2} + .......{ + ^y}{C_r} = $
$\frac{{x\;!\;y\;!}}{{r\;!}}$
$\frac{{(x + y)\;!}}{{r\;!}}$
$^{x + y}{C_r}$
$^{xy}{C_r}$
एक व्यक्ति $X$ के $7$ मित्र हैं, जिनमें $4$ महिलाएँ हैं तथा $3$ पुरूष हैं, उसकी पत्नी $Y$ के भी $7$ मित्र हैं, जिनमें $3$ महिलाएँ तथा $4$ पुरुष हैं। यह माना गया कि $X$ तथा $Y$ का कोई उभयनिष्ठ (common) मित्र नहीं है। तो उन तरीकों की संख्या जिनमें $X$ तथा $Y$ एक साथ $3$ महिलाओं तथा $3$ पुरूषों को पार्टी पर बुलाएं कि $X$ तथा $Y$ प्रत्येक कें तीन-तीन मित्र आयें, है:
एक विद्यार्थी को किसी परीक्षा में $13$ में से $10$ प्रश्नों का उत्तर इस प्रकार देना है कि वह प्रथम पांच प्रश्नों में से कम से कम $4$ प्रश्न का चुनाव कर सकता है, तो वह कुल कितने प्रकार से प्रश्नों का उत्तर दे सकता है
एक पिता $8$ बच्चों में से $3$ बच्चों को एक बार में एक साथ लेकर पशु उद्यान इस प्रकार जाता है कि तीन समान बच्चे एक साथ एक से अधिक बार नहीं जा सकते, तब वह उद्यान कितनी बार जाएगा
$r$ का वह मान, जिसके लिये ${ }^{20} C _{ r }{ }^{20} C _{0}+{ }^{20} C _{ r -1}{ }^{20} C _{1}$ $+{ }^{20} C _{ r -2}{ }^{20} C _{2}+\ldots{ }^{20} C _{0}{ }^{20} C _{ r }$ अधिकतम है
$n$वस्तुओं में से $r$ वस्तुओं को लेकर बनाये गये क्रमचयों की संख्या, जब $p$ वस्तुयें हमेशा सम्मिलित की जाती हैं , होगी